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1. SOME BASIC DEFINITIONS AND FACTS
1.1. Sequences and Series.
e A sequence of points {x,} in a metric space (X, d) is said to converge if there is a point
x € X such that for every € > 0 there is an N € N such that for all n > N we have

d(z,, ) < €.

e A sequence is said to be bounded if the sequence, considered as a subset of X is a bounded
set.

e Every sequence in a compact metric space has a convergent subsequence.

e A Cauchy sequence is a sequence {z,} such that for every ¢ > 0 there is a number N € N
such that for all n,m > N we have d(z,,z,) < €.

e In a metric space, every convergent sequence is Cauchy.

e A Cauchy sequence in a compact metric space converges.

e The Cauchy product of two series Y a, and ) _ b, is Y ¢, where

Cpn = Zakbn,k,n =0,1,2, ..
k=0

The following deal with sequences of functions.

e Given a sequence of functions {f,} defined on some set F, and suppose that {f,(z)} con-
verges for every z € E, then we may define the limiting function f(z) = lim f,(z). This is
n—oo

called pointwise convergence of the sequence { f,,}. Similarly, if the series > f,,(x) converges
for every x € E, we define the sum of the sequence to be f(z) = an(:c) Both this
n=1

limiting function, and the sum are defined on E again.
e A sequence of functions is said to uniformly converge to f on E if for every € > 0 there is
an N € N such that for n > N we have

|ful@) = f(2)] <e
for all x € E. Uniform convergence of course implies pointwise convergence. We say that
o
Z fn(z) converges uniformly on E' if the sequence of partial sums converges uniformly on
n=1

E.
e The sequence {f,} converges uniformly on FE iff for every ¢ > 0 there is an N € N such that
for m,n > N and x € E we have

[fo(@) = fm(2)] <&

e Let {f,} be a sequence of functions on F and suppose that |f,(z)] < M, for all z € E.
Then Y f,, converges uniformly on E if > M, converges.
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1.2. Continuity.

e A function on metric spaces f : (X,d,) = (Y,d,) is continuous at x € X if for every ¢ > 0
there is a ¢ > 0 such that for all y with d,(x,y) < d then d,(f(x), f(y)) < e. If fis
continuous at every x € X, then it is simply called continuous on X.

e A function as above is uniformly continuous if for all £ > 0 there is a 6 > 0 such that
d,(f(z), f(y)) < e whenever d,(z,y) <.

e The continuous image of a compact set is compact.

e The continuous image of a connected set is connected.

e A continuous function on a compact metric space realizes its minimum and maximum.

e A continuous bijection from a compact metric space to any metric space has a continuous
inverse (or, more generally, a continuous bijection from a compact topological space to a
Hausdorff space is a homeomorphism).

e A continuous function on a compact metric space is automatically uniformly continuous.

e Mean Value Theorem

o If {f,} uniformly converges to f on a set E in a metric space, then for a limit point z € E
we have

lim lim f,(¢) = lim lim f,(¢).

t—x n—00 n—oo t—x

1.3. Differentiation.

e Let {f,} be a sequence of differentiable functions on [a, b] such that {f,(z)} converges for
some xg € [a,b]. Then if {f],} converges uniformly on [a, b] then so does { f,}, and moreover,
if £, — f, then

fi(x) = lim f(z).
n—o0
It is important to note that a converse of this is not true, that is {f,} being uniformly

sin nx
convergent says nothing about {f/}. To see this, consider the sequence f,(z) =

vn
e Let £ C R” be open and suppose f : E — R™, and let x € E. Then if there is a linear map
A € L(R",R™) such that

i @+ 1) — f(a) — AR _

i 7] 0

then we say that f is differentiable at x, and we write f'(z) = A. As usual, if f is differ-
entiable at every point of F, then we say f is differentiable on E. A is unique. Sometimes
f'(x) is called the total derivative of f at x. f is said to be continuously differentiable, or
C1, if f" is a continuous mapping of E into L(R™ R™).

1.4. Integration.

e Let av be a monotonically increasing function on [a, b]. Suppose { f,,} is a sequence of Riemann
integrable functions and that f,, — f uniformly on [a,b]. Then f is Riemann integrable and

b b
/ fda = lim frda.

n—o0 a

2. ARZELA-AscoLl THEOREM

Let X be a topological space. Denote by C(X) the space of continuous functions from X to
C. The uniform metric on C(X) is given by p(f,g) = ||f — g||l« where || - ||, is the uniform norm
given by ||f]l. = sup{|f(x)| | = € X}. A sequence {f,} in C(X) is said to converge uniformly on
compact sets to a function f € C(X) if for every compact set K C X the sequence { f,|, } converges



uniformly to f|,. We say X is o-compact if it is the countable union of compact sets.

Given a metric space X, we say that a subset of X is totally bounded if for every ¢ > 0, X can
be covered by finitely many metric balls of radius ¢.

Let X be a topological space and let F C C(X). We say that Z is equicontinuous at x € X if
for every € > 0 there is a neighborhood U of = such that |f(y) — f(z)| < e forally € U and f € F.
F is simply called equicontinuous if it is equicontinuous at all z € X. Furthermore, we say that F
is pointwise bounded if {f(z) | f € F} is a bounded subset of C for all z € X.

We will cover two versions of the Arzela-Ascoli theorem:

Theorem 1 (Arzela-Ascoli I). Let X be a compact Hausdorff space. If F is an equicontinuous,
pointwise bounded subset of C(X), then F is totally bounded in the uniform metric, and the closure
of F in C(X) is compact.

Theorem 2 (Arzela-Ascoli II). Let X be a o-compact locally compact, Hausdorff space. If {f.}
is an equicontinuous, pointwise bounded sequence in C(X), then there exists an f € C(X) and a
subsequence of {fn} that converges to f uniformly on compact sets.

Example (Folland, Ch. 4, Ex. 64). Let (X, p) be a metric space. A function f € C(X) is called
Holder continuous of exponent o (o > 0) if the quantity

Na(f) = iy p(r, )

is finite. If X is compact, {f € C(X) | ||fll. <1 and N,(f) <1} is compact in C(X).

Proof. Let F be the set we are trying to show is compact in C'(X). Note that a metric space is Haus-
dorff. The COA for this problem is to show that F is closed, equicontinuous, and pointwise bounded.

First, since || f|l. < 1 for all f € F, we know that for all z € X, {f(z) | f € F} is bounded in C.
Hence F is pointwise bounded.

Second, note that, since for all f € F we have N,(f) < 1, by definition of N,(f) we have
1f(z) = f(y)] < p(z,y)*. Fixx € X and let ¢ > 0. Let U = B_y (), then for all y € U we have

@) - fw)l < () ==

Therefore F is equicontinuous at x € X. This same argument holds for all z € X, and therefore F
is equicontinuous.

Therefore, by Arzela-Ascoli I, F is compact in C(X).



Now, let {f,} be a sequence in F converging to a function f € C(X). Since

£l = 1l lim full

lim f, (2)

n—00 ‘

= sup
zeX

= sup lim [f,(z)]

zeX n—oo

lim sup | f,,(x)]

n—0o0 zeX
lim ] fo |
n—oo

lim1=1

n—0o0
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we thus have that f € F, and hence F is closed, and by the above, compact in C'(X). 0]

3. STONE-WEIERSTRAU/ THEOREM

Let X be a compact Hausdorff space. Let A be a subset of C'(X,R) or C'(X). We say that A
separates points if for all z,y € X there is a function f € A such that f(z) # f(y). If Ais a real
(resp. complex) vector subspace of C(X,R) (resp. C(X)) such that when f,g € A, fg € A, we call
A an algebra.

Theorem 3 (Stone-Weierstrau/3). Let X be a compact Hausdorff space. If A is a closed subalgebra
of C(X,R) that separates points, then either A = C(X,R) or A= {f € C(X,R) | f(zo) = 0} for
some xog € X. The first alternative holds iff A contains the constant functions.

Theorem 4 (Complex Stone-Weierstrauf3). Let X be a compact Hausdorff space. If A is a closed
complex subalgebra of C(X) that separates points and is closed under complex conjugation, then
either A =C(X) or A= {f € C(X) | f(xg) =0} for some zy € X.

Example (Folland, Ch. 4, Ex. 68). Let X and Y be compact Hausdorff spaces. The algebra
generated by functions of the form f(z,y) = g(x)h(y), where g € C(X) and h € C(Y), is dense in
C(X xY).

Proof. Let A be the algebra in the statement. Clearly A is a complex subalgebra of C'(X x Y)
and it is also clearly closed under complex conjugation. Of course, what we really need to show
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is that the closure of A, A, is equal to C'(X). Since complex algebra operations are continuous,
and conjugation is continuous, we also have that A is a complex subalgebra of C(X x Y). Now
clearly A contains the constant functions since we may take ¢ and h to be any constant function
on X and Y respectively. Furthermore given two distinct points (z1,¥1), (z2,%2) € X x Y (WLOG
assume that x; # x3), choosing a nonzero constant function for h(y) and a function g(x) which
takes different values on x; and x5 (which is possible since C'(X) itself separates points, we have
a function f(z,y) = g(z)h(y) having different values on (x1,4;) and (29,%2), hence A separates
points. Applying the complex version of Stone-Weierstrauf3 to A we now have that A = C(X xY),
meaning that A is dense in C'(X x Y). O

4. THE INVERSE AND IMPLICIT FUNCTION THEOREMS

Let us recall that a contraction mapping from a metric space (X, p) to itself is a map ¢ : X — X
such that there is a number ¢ < 1 such that p (¢(x), ¢(y)) < cp(z,y) for all z,y € X. A simple, yet
powerful result is the following:

Theorem 5 (The Contraction Principle). If X is a complete metric space, and if ¢ is a contraction
of X into itself, then there exists a unique fixed point of ¢.

Proof. Let ¢ : X — X be our contraction mapping, and let ¢ be the appropriate constant. Let’s
begin by proving the uniqueness of the fixed point. Say there are two distinct points, x,y € X, such

that ¢(x) = = and ¢(y) = y. Then p(x,y) = p(d(x), p(y)) < cp(x,y) < p(x,y), a contradiction.
Thus the fixed point, if it exists, is unique.

Now, for the existence. Choose a point zy € X, and define x,,.; := ¢(x,,). Note that p(x,41,2,) =
c"p(xy1,z9). Now, for arbitrary n < m we have

A—inegq. m
P(xm,ffn) S Z P(ifia%‘—l)
1=n+1
S Z Ciilp(xlaxO)
i=n+1
= ("M MY (2, 20)
"
< 7Pl w)

so, since ¢ < 1, this shows that {z,} is a Cauchy sequence. Since X is a complete metric space,
this sequence converges, say to x. Now

o) = o (Tim 2,) “=" Tim (@) = lim wpir = 2,

n—oo n—oo

thus showing that ¢ has a fixed point.
O

This next theorem is used for finding “local inverses” of functions. Simply put, if the derivative
matrix of a function is invertible at a point, then the function is invertible in a neighborhood of
that point

Theorem 6 (The Inverse Function Theorem). Let E C R™ be an open set and suppose that f €
CYE,R"™), f'(a) is invertible for some a € E, and f(a) =b. Then
(a) there exist open sets U and V' in R"™ such that a € U, b € V, f is injective on U, and
fU)=V;



(b) if g is the inverse of f (which exists by (a)), defined in V by
g(f(x)) =z, zel,
then g € CH(V).
A nice consequence of this theorem (really just part (a) of it) is the following:

Corollary. Let f be as in the theorem, and suppose that f' is invertible for all x € E, then f(W)
1s open in R™ for all open W C E.

Proof. Let W an open subset of E' (and hence it is an open subset of R"), restrict f to W, and for
each x € W let U, and V, be the neighborhoods of = and f(x), respectively, given by the inverse
function theorem. Then U U, =W, and we have

zeW

fw) =f (U Ux) =l ru)=w
zeW zeW zeW
showing thus that f(7V) is an open set in R™. O

Here is a simple, but illustrating example of a possible pitfall one could fall into with the inverse
function theorem.

Example (Adapted from Rudin, Ch. 9, Ex. 17). Let f : R* — R? be given by f(x,y) =
(e® cosy, e siny). Show that f' is everywhere invertible, but that f does not have a global inverse.

Proof. Tt is clear that f is a C'! function, so let’s begin by computing f’(z,y):

e® cos —e® sin
[z, y) = ( Y Y )

e*siny e*cosy
Then since we have
det f'(z,y) = e** cos’y + e* sin’ y = e**
which is never zero, we see that f’(z,y) is everywhere invertible. However, f cannot have a global

inverse since it is clearly not injective (consider the two points (0,0) and (0,2), for example).
What this shows is that f has a local inverse at every point of R2, but no global inverse exists. [

Notation 1. For the implicit function theorem, we will refer to points in R™™™ as pairs (x,y) where
x € R" andy € R™. So, for A € L(R*™™™ R") and h € R™ and k € R", we define A,h := A(h,0)
and Ak = A(0,k).

Theorem 7 (The Implicit Function Theorem). Let E C R™™ be an open set and let f € C'(E,R™)
such that f(a,b) =0 for some (a,b) € E. Let A = f'(a,b) and assume that A, is invertible. Then
there are open sets U C R™™ and W C R™, with (a,b) € U such that the following property holds:

For every y € W there is a unique x such that (x,y) € U and f(z,y) = 0. Letting x = g(y), then
g € CYW.R"), g(b) = a, f(9(y),y) =0 fory € W, and ¢'(b) = —(As) "' 4.

5. FOURIER SERIES

A trigonometric polynomial is one of the form

N

f(z) =ao+ Z (an sinnx + b, cos nx)
n=—N



where z € R and a,, b, € C. More compactly we can write this as

N

(1) f(z) = Z ¢, e,

n=—N

Clearly these polynomials have period 27. Note now that

" ome 2w n=0
ST 0, n#0
Multiplying (1) by e~“™® then integrating from —7 to m we see that, by the above,

1 [7 -
Cn = 5 /7T f(z)e "™ dz,

for [m| < N and ¢, = 0 otherwise. From this, we determine that (1) isreal iff c_,, = ¢,. Accordingly,
we now define a trigonometric series by

o0

(2) Z cne™.

n=—oo

For a Riemann integrable function f with period 2w, we call the ¢, it’s Fourier coefficients, and
the associated series its Fourier series. To tie a function with its Fourier series, we shall write

flz) ~ >0 cpe™.

I don’t wish to delve into Fourier analysis here, but I do wish to point out a rather interesting
consequence:

Theorem 8 (Parseval’s Theorem). If f(z) ~ > 07 c,e™ and g(x) ~ Y o2 v,e™, then

n=—oo

o0

% / f@)g(@)de = > e,

n=—oo
and, wn particular,

1 " 2 = 2
5 | W@Pdr= 3 fef

n=—oo

6. MISCELLANY

Just a quick comment on something incredibly useful. Recall that the support of a real valued
function is the closure of the set of points where it is nonzero, i.e., for f : X — R, supp(f) =

{r e X|f(x)#0}.

Theorem 9 (Partition of Unity). Suppose that K C R™ is compact, and let {V,} be an open cover
of K. Then there are functions iy, ...,1ps € C(R™) such that

(1) 0<9; <1, for1<i<s

(2) each v; has its support in some V,

(3) Yr(x) + -+ +bs(x) =1 for all v € K.

Because of (3) {t;} is called a partition of unity, and (2) is said as {1/;} is subordinate to {V,}.
Recall that the Jacobian of a function f : E — R" where E is open in R" is given by Jy(x) =

det f'(x).
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Theorem 10 (Change of Variables). Suppose T is an injective C1 mapping of an open set E in
R* into R* such that Jr(x) # 0 for all v € E. If f is a continuous function on R* with compact
support in T(E), then

/Rk fly)dy = /Rk f(T(x))|Jr(x)|dx.

7. STOKES’ THEOREM
Theorem 11 (Stokes’ Theorem). If ¥ is a C? smooth k-chain in an open set V.C R™ and if w is

aCt (k—1)— form in V, then
/dw:/ w.
v ow

Corollary (Green’s Theorem). Suppose E is an open set in R*, a € CY(E), f € CY(E), and Q a
closed subset of E with positively oriented boundary 0. Then

/BQ adx + Bdy = /Q(ﬁm — ay)dA.
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