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1. Some Basic Definitions and Facts

1.1. Sequences and Series.

• A sequence of points {xn} in a metric space (X, d) is said to converge if there is a point
x ∈ X such that for every ε > 0 there is an N ∈ N such that for all n > N we have

d(xn, x) < ε.

• A sequence is said to be bounded if the sequence, considered as a subset of X is a bounded
set.
• Every sequence in a compact metric space has a convergent subsequence.
• A Cauchy sequence is a sequence {xn} such that for every ε > 0 there is a number N ∈ N

such that for all n,m > N we have d(xn, xm) < ε.
• In a metric space, every convergent sequence is Cauchy.
• A Cauchy sequence in a compact metric space converges.
• The Cauchy product of two series

∑
an and

∑
bn is

∑
cn where

cn =
n∑
k=0

akbn−k, n = 0, 1, 2, ...

The following deal with sequences of functions.

• Given a sequence of functions {fn} defined on some set E, and suppose that {fn(x)} con-
verges for every x ∈ E, then we may define the limiting function f(x) = lim

n→∞
fn(x). This is

called pointwise convergence of the sequence {fn}. Similarly, if the series
∑
fn(x) converges

for every x ∈ E, we define the sum of the sequence to be f(x) =
∞∑
n=1

fn(x). Both this

limiting function, and the sum are defined on E again.
• A sequence of functions is said to uniformly converge to f on E if for every ε > 0 there is

an N ∈ N such that for n > N we have

|fn(x)− f(x)| < ε

for all x ∈ E. Uniform convergence of course implies pointwise convergence. We say that
∞∑
n=1

fn(x) converges uniformly on E if the sequence of partial sums converges uniformly on

E.
• The sequence {fn} converges uniformly on E iff for every ε > 0 there is an N ∈ N such that

for m,n > N and x ∈ E we have

|fn(x)− fm(x)| < ε.

• Let {fn} be a sequence of functions on E and suppose that |fn(x)| ≤ Mn for all x ∈ E.
Then

∑
fn converges uniformly on E if

∑
Mn converges.
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1.2. Continuity.

• A function on metric spaces f : (X, dx)→ (Y, dy) is continuous at x ∈ X if for every ε > 0
there is a δ > 0 such that for all y with dx(x, y) < δ then dy(f(x), f(y)) < ε. If f is
continuous at every x ∈ X, then it is simply called continuous on X.
• A function as above is uniformly continuous if for all ε > 0 there is a δ > 0 such that
dy(f(x), f(y)) < ε whenever dx(x, y) < δ.
• The continuous image of a compact set is compact.
• The continuous image of a connected set is connected.
• A continuous function on a compact metric space realizes its minimum and maximum.
• A continuous bijection from a compact metric space to any metric space has a continuous

inverse (or, more generally, a continuous bijection from a compact topological space to a
Hausdorff space is a homeomorphism).
• A continuous function on a compact metric space is automatically uniformly continuous.
• Mean Value Theorem
• If {fn} uniformly converges to f on a set E in a metric space, then for a limit point x ∈ E

we have

lim
t→x

lim
n→∞

fn(t) = lim
n→∞

lim
t→x

fn(t).

1.3. Differentiation.

• Let {fn} be a sequence of differentiable functions on [a, b] such that {fn(x0)} converges for
some x0 ∈ [a, b]. Then if {f ′n} converges uniformly on [a, b] then so does {fn}, and moreover,
if fn → f , then

f ′(x) = lim
n→∞

f ′n(x).

It is important to note that a converse of this is not true, that is {fn} being uniformly

convergent says nothing about {f ′n}. To see this, consider the sequence fn(x) =
sinnx√

n
.

• Let E ⊂ Rn be open and suppose f : E → Rm, and let x ∈ E. Then if there is a linear map
A ∈ L(Rn,Rm) such that

lim
h→0

|f(x+ h)− f(x)− Ah|
|h|

= 0

then we say that f is differentiable at x, and we write f ′(x) = A. As usual, if f is differ-
entiable at every point of E, then we say f is differentiable on E. A is unique. Sometimes
f ′(x) is called the total derivative of f at x. f is said to be continuously differentiable, or
C1, if f ′ is a continuous mapping of E into L(Rn,Rm).

1.4. Integration.

• Let α be a monotonically increasing function on [a, b]. Suppose {fn} is a sequence of Riemann
integrable functions and that fn → f uniformly on [a, b]. Then f is Riemann integrable and∫ b

a

fdα = lim
n→∞

∫ b

a

fndα.

2. Arzelà-Ascoli Theorem

Let X be a topological space. Denote by C(X) the space of continuous functions from X to
C. The uniform metric on C(X) is given by ρ(f, g) = ‖f − g‖u where ‖ · ‖u is the uniform norm
given by ‖f‖u = sup{|f(x)| | x ∈ X}. A sequence {fn} in C(X) is said to converge uniformly on
compact sets to a function f ∈ C(X) if for every compact set K ⊂ X the sequence {fn|K} converges
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uniformly to f |K . We say X is σ-compact if it is the countable union of compact sets.

Given a metric space X, we say that a subset of X is totally bounded if for every ε > 0, X can
be covered by finitely many metric balls of radius ε.

Let X be a topological space and let F ⊂ C(X). We say that F is equicontinuous at x ∈ X if
for every ε > 0 there is a neighborhood U of x such that |f(y)− f(x)| < ε for all y ∈ U and f ∈ F .
F is simply called equicontinuous if it is equicontinuous at all x ∈ X. Furthermore, we say that F
is pointwise bounded if {f(x) | f ∈ F} is a bounded subset of C for all x ∈ X.

We will cover two versions of the Arzelà-Ascoli theorem:

Theorem 1 (Arzelà-Ascoli I). Let X be a compact Hausdorff space. If F is an equicontinuous,
pointwise bounded subset of C(X), then F is totally bounded in the uniform metric, and the closure
of F in C(X) is compact.

Theorem 2 (Arzelà-Ascoli II). Let X be a σ-compact locally compact, Hausdorff space. If {fn}
is an equicontinuous, pointwise bounded sequence in C(X), then there exists an f ∈ C(X) and a
subsequence of {fn} that converges to f uniformly on compact sets.

Example (Folland, Ch. 4, Ex. 64). Let (X, ρ) be a metric space. A function f ∈ C(X) is called
Hölder continuous of exponent α (α > 0) if the quantity

Nα(f) = sup
x 6=y

|f(x)− f(y)|
ρ(x, y)α

is finite. If X is compact, {f ∈ C(X) | ‖f‖u ≤ 1 and Nα(f) ≤ 1} is compact in C(X).

Proof. Let F be the set we are trying to show is compact in C(X). Note that a metric space is Haus-
dorff. The COA for this problem is to show that F is closed, equicontinuous, and pointwise bounded.

First, since ‖f‖u ≤ 1 for all f ∈ F , we know that for all x ∈ X, {f(x) | f ∈ F} is bounded in C.
Hence F is pointwise bounded.

Second, note that, since for all f ∈ F we have Nα(f) ≤ 1, by definition of Nα(f) we have
|f(x)− f(y)| ≤ ρ(x, y)α. Fix x ∈ X and let ε > 0. Let U = B

ε
1
α

(x), then for all y ∈ U we have

|f(x)− f(y)| ≤
(
ε

1
α

)α
= ε.

Therefore F is equicontinuous at x ∈ X. This same argument holds for all x ∈ X, and therefore F
is equicontinuous.

Therefore, by Arzelà-Ascoli I, F is compact in C(X).
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Now, let {fn} be a sequence in F converging to a function f ∈ C(X). Since

‖f‖u = ‖ lim
n→∞

fn‖u

= sup
x∈X

∣∣∣ lim
n→∞

fn(x)
∣∣∣

= sup
x∈X

lim
n→∞

|fn(x)|

= lim
n→∞

sup
x∈X
|fn(x)|

= lim
n→∞

‖fn‖u
≤ lim

n→∞
1 = 1

and

Nα(f) = sup
x 6=y

|f(x)− f(y)|
ρ(x, y)α

= sup
x6=y

|limn→∞ fn(x)− limn→∞ fn(y)|
ρ(x, y)α

= sup
x6=y

|limn→∞ [fn(x)− fn(y)]|
ρ(x, y)α

= sup
x6=y

lim
n→∞

|fn(x)− fn(y)|
ρ(x, y)α

= lim
n→∞

sup
x 6=y

|fn(x)− fn(y)|
ρ(x, y)α

= lim
n→∞

Nα(fn)

≤ lim
n→∞

1 = 1

we thus have that f ∈ F , and hence F is closed, and by the above, compact in C(X). �

3. Stone-Weierstrauβ Theorem

Let X be a compact Hausdorff space. Let A be a subset of C(X,R) or C(X). We say that A
separates points if for all x, y ∈ X there is a function f ∈ A such that f(x) 6= f(y). If A is a real
(resp. complex) vector subspace of C(X,R) (resp. C(X)) such that when f, g ∈ A, fg ∈ A, we call
A an algebra.

Theorem 3 (Stone-Weierstrauβ). Let X be a compact Hausdorff space. If A is a closed subalgebra
of C(X,R) that separates points, then either A = C(X,R) or A = {f ∈ C(X,R) | f(x0) = 0} for
some x0 ∈ X. The first alternative holds iff A contains the constant functions.

Theorem 4 (Complex Stone-Weierstrauβ). Let X be a compact Hausdorff space. If A is a closed
complex subalgebra of C(X) that separates points and is closed under complex conjugation, then
either A = C(X) or A = {f ∈ C(X) | f(x0) = 0} for some x0 ∈ X.

Example (Folland, Ch. 4, Ex. 68). Let X and Y be compact Hausdorff spaces. The algebra
generated by functions of the form f(x, y) = g(x)h(y), where g ∈ C(X) and h ∈ C(Y ), is dense in
C(X × Y ).

Proof. Let A be the algebra in the statement. Clearly A is a complex subalgebra of C(X × Y )
and it is also clearly closed under complex conjugation. Of course, what we really need to show
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is that the closure of A, A, is equal to C(X). Since complex algebra operations are continuous,
and conjugation is continuous, we also have that A is a complex subalgebra of C(X × Y ). Now
clearly A contains the constant functions since we may take g and h to be any constant function
on X and Y respectively. Furthermore given two distinct points (x1, y1), (x2, y2) ∈ X × Y (WLOG
assume that x1 6= x2), choosing a nonzero constant function for h(y) and a function g(x) which
takes different values on x1 and x2 (which is possible since C(X) itself separates points, we have
a function f(x, y) = g(x)h(y) having different values on (x1, y1) and (x2, y2), hence A separates
points. Applying the complex version of Stone-Weierstrauβ to A we now have that A = C(X×Y ),
meaning that A is dense in C(X × Y ). �

4. The Inverse and Implicit Function Theorems

Let us recall that a contraction mapping from a metric space (X, ρ) to itself is a map φ : X → X
such that there is a number c < 1 such that ρ (φ(x), φ(y)) ≤ cρ(x, y) for all x, y ∈ X. A simple, yet
powerful result is the following:

Theorem 5 (The Contraction Principle). If X is a complete metric space, and if φ is a contraction
of X into itself, then there exists a unique fixed point of φ.

Proof. Let φ : X → X be our contraction mapping, and let c be the appropriate constant. Let’s
begin by proving the uniqueness of the fixed point. Say there are two distinct points, x, y ∈ X, such
that φ(x) = x and φ(y) = y. Then ρ(x, y) = ρ (φ(x), φ(y)) ≤ cρ(x, y) < ρ(x, y), a contradiction.
Thus the fixed point, if it exists, is unique.

Now, for the existence. Choose a point x0 ∈ X, and define xn+1 := φ(xn). Note that ρ(xn+1, xn) =
cnρ(x1, x0). Now, for arbitrary n < m we have

ρ(xm, xn)
∆−ineq.
≤

m∑
i=n+1

ρ(xi, xi−1)

≤
m∑

i=n+1

ci−1ρ(x1, x0)

= (cn + cn+1 + · · ·+ cm−1)ρ(x1, x0)

≤ cn

1− c
ρ(x1, x0)

so, since c < 1, this shows that {xn} is a Cauchy sequence. Since X is a complete metric space,
this sequence converges, say to x. Now

φ(x) = φ
(

lim
n→∞

xn

)
φ cont.

= lim
n→∞

φ(xn) = lim
n→∞

xn+1 = x,

thus showing that φ has a fixed point.
�

This next theorem is used for finding “local inverses” of functions. Simply put, if the derivative
matrix of a function is invertible at a point, then the function is invertible in a neighborhood of
that point

Theorem 6 (The Inverse Function Theorem). Let E ⊂ Rn be an open set and suppose that f ∈
C1(E,Rn), f ′(a) is invertible for some a ∈ E, and f(a) = b. Then

(a) there exist open sets U and V in Rn such that a ∈ U , b ∈ V , f is injective on U , and
f(U) = V ;
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(b) if g is the inverse of f (which exists by (a)), defined in V by

g(f(x)) = x, x ∈ U,

then g ∈ C1(V ).

A nice consequence of this theorem (really just part (a) of it) is the following:

Corollary. Let f be as in the theorem, and suppose that f ′ is invertible for all x ∈ E, then f(W )
is open in Rn for all open W ⊂ E.

Proof. Let W an open subset of E (and hence it is an open subset of Rn), restrict f to W , and for
each x ∈ W let Ux and Vx be the neighborhoods of x and f(x), respectively, given by the inverse

function theorem. Then
⋃
x∈W

Ux = W , and we have

f(W ) = f

(⋃
x∈W

Ux

)
=
⋃
x∈W

f(Ux) =
⋃
x∈W

Vx

showing thus that f(W ) is an open set in Rn. �

Here is a simple, but illustrating example of a possible pitfall one could fall into with the inverse
function theorem.

Example (Adapted from Rudin, Ch. 9, Ex. 17). Let f : R2 → R2 be given by f(x, y) =
(ex cos y, ex sin y). Show that f ′ is everywhere invertible, but that f does not have a global inverse.

Proof. It is clear that f is a C1 function, so let’s begin by computing f ′(x, y):

f ′(x, y) =

(
ex cos y −ex sin y
ex sin y ex cos y

)
Then since we have

det f ′(x, y) = e2x cos2 y + e2x sin2 y = e2x

which is never zero, we see that f ′(x, y) is everywhere invertible. However, f cannot have a global
inverse since it is clearly not injective (consider the two points (0, 0) and (0, 2π), for example).
What this shows is that f has a local inverse at every point of R2, but no global inverse exists. �

Notation 1. For the implicit function theorem, we will refer to points in Rn+m as pairs (x,y) where
x ∈ Rn and y ∈ Rm. So, for A ∈ L(Rn+m,Rn) and h ∈ Rm and k ∈ Rn, we define Axh := A(h,0)
and Ayk := A(0,k).

Theorem 7 (The Implicit Function Theorem). Let E ⊂ Rn+m be an open set and let f ∈ C1(E,Rn)
such that f(a, b) = 0 for some (a, b) ∈ E. Let A = f ′(a, b) and assume that Ax is invertible. Then
there are open sets U ⊂ Rn+m and W ⊂ Rm, with (a, b) ∈ U such that the following property holds:
For every y ∈ W there is a unique x such that (x, y) ∈ U and f(x, y) = 0. Letting x = g(y), then
g ∈ C1(W,Rn), g(b) = a, f(g(y), y) = 0 for y ∈ W , and g′(b) = −(Ax)

−1Ay.

5. Fourier Series

A trigonometric polynomial is one of the form

f(x) = a0 +
N∑

n=−N

(an sinnx+ bn cosnx)
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where x ∈ R and an, bn ∈ C. More compactly we can write this as

(1) f(x) =
N∑

n=−N

cne
inx.

Clearly these polynomials have period 2π. Note now that∫ π

−π
einx =

{
2π, n = 0

0, n 6= 0
.

Multiplying (1) by e−imx then integrating from −π to π we see that, by the above,

cm =
1

2π

∫ π

−π
f(x)e−imxdx,

for |m| ≤ N and cm = 0 otherwise. From this, we determine that (1) is real iff c−n = cn. Accordingly,
we now define a trigonometric series by

(2)
∞∑

n=−∞

cne
inx.

For a Riemann integrable function f with period 2π, we call the cn it’s Fourier coefficients, and
the associated series its Fourier series. To tie a function with its Fourier series, we shall write
f(x) ∼

∑∞
n=−∞ cne

inx.

I don’t wish to delve into Fourier analysis here, but I do wish to point out a rather interesting
consequence:

Theorem 8 (Parseval’s Theorem). If f(x) ∼
∑∞

n=−∞ cne
inx and g(x) ∼

∑∞
n=−∞ γne

inx, then

1

2π

∫ π

−π
f(x)g(x)dx =

∞∑
n=−∞

cnγn,

and, in particular,

1

2π

∫ π

−π
|f(x)|2dx =

∞∑
n=−∞

|cn|2.

6. Miscellany

Just a quick comment on something incredibly useful. Recall that the support of a real valued
function is the closure of the set of points where it is nonzero, i.e., for f : X → R, supp(f) =

{x ∈ X | f(x) 6= 0}.

Theorem 9 (Partition of Unity). Suppose that K ⊂ Rn is compact, and let {Vα} be an open cover
of K. Then there are functions ψ1, ..., ψs ∈ C(Rn) such that

(1) 0 ≤ ψi ≤ 1, for 1 ≤ i ≤ s
(2) each ψi has its support in some Vα
(3) ψ1(x) + · · ·+ ψs(x) = 1 for all x ∈ K.

Because of (3) {ψi} is called a partition of unity, and (2) is said as {ψi} is subordinate to {Vα}.
Recall that the Jacobian of a function f : E → Rn where E is open in Rn is given by Jf (x) =

detf ′(x).
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Theorem 10 (Change of Variables). Suppose T is an injective C1 mapping of an open set E in
Rk into Rk such that JT (x) 6= 0 for all x ∈ E. If f is a continuous function on Rk with compact
support in T (E), then ∫

Rk
f(y)dy =

∫
Rk
f(T (x))|JT (x)|dx.

7. Stokes’ Theorem

Theorem 11 (Stokes’ Theorem). If Ψ is a C2 smooth k-chain in an open set V ⊂ Rm and if ω is
a C1 (k − 1)− form in V , then ∫

Ψ

dω =

∫
∂Ψ

ω.

Corollary (Green’s Theorem). Suppose E is an open set in R2, α ∈ C1(E), β ∈ C1(E), and Ω a
closed subset of E with positively oriented boundary ∂Ω. Then∫

∂Ω

αdx+ βdy =

∫
Ω

(βx − αy)dA.
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