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1. The situation in classical mechanics
Consider the motion of a particle with mass 1 in Rn(q) (called the configuration space), where q is the

coordinate on Rn (the position of the particle), in the presence of a potential force

Φ(q, t) = −∂U
∂q

(q, t). (1)

where U(q, t) is the potential energy function. By Newton’s second law (force is mass times acceleration),
we have

q̈ = Φ(q, t) (2)

We introduce now the new variable p := q̇, which, since the partical has mass 1, we call the momentum
coordinate, and consider now the total energy function of the particle

H(p, q, t) = kinetic energy + potential energy =
1

2
p2 + U(q, t) (3)

Then, using the usual trick for turning a second order ODE into a system of first order ODEs, (2)
becomes: {

q̇ = p

ṗ = Φ(q, t)
(4)

We now restate (4) in terms of F . First, taking
∂

∂p
of both sides in (3) gives

∂H

∂p
= p

and taking
∂

∂q
of both sides gives

∂H

∂q
=
∂U

∂q
(q, t)

and so
∂H

∂q
= −Φ(q, t)

thus, (4) reads as 
q̇ =

∂H

∂p
(p, q, t)

ṗ = −∂H
∂q

(p, q, t)

(5)

which we call the Hamiltonian equations. This should be understood as a system of ODEs on the phase
space, R2n(p, q).
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For our first bit of generalization, we forget the form of H in (3), and instead just ask that H behaves
sufficiently nice to guarantee solutions to (5) for all t ∈ R (this translates to a condition on H at infinity).
We continute to call H an energy function. Given such a function H, we can define the flow

ht : R2n → R2n

which takes an initial condition (p(0), q(0)) to the corresponding solution (p(t), q(t)) at time t. Each ht is
a diffeomorphism of the phase space, and we call them mechanical motions.

1.1. Facts about mechanical motions. Perhaps not the most classical way to think about
it, but the Liouville theorem from classical mechanics basically states that the flow on phase space is
incompressible. What this means is that given any closed surface S in phase space, after applying the flow
to it for any time t the volume inside ht(S) is equal to that inside S. In terms of differential forms, the
Liouville theorem reads:

Theorem (Liouville Theorem). Mechanical motions preserve the volume form

V ol = dp1 ∧ dq1 ∧ · · · ∧ dpn ∧ dqn,

i.e., h∗t (V ol) = V ol.

This theorem was one of the main driving forces of Ergodic theory (volume preserving geometry). This
theorem goes back over 100 years! Then, in the 1960’s, along came Vladimir Arnold who proved something
more subtle and general is actually true about mechanical motions:

Theorem (Arnold 1960’s). Mechanical motions preserve the 2-form

ω0 = dp1 ∧ dq1 + · · ·+ dpn ∧ dqn.

Remark. Note that, since V ol =
1

n!
ωn
0 (ωn

0 = ω0 ∧ · · · ∧ ω0︸ ︷︷ ︸
n

), this theorem implies the Liouville theorem.

This result of Arnold led people to want to study the difference between mechanical motions and general
volume preserving maps, and hence the field of symplectic topology was born! An example illustrating that
there is indeed a difference is given by various non-squeezing results, e.g., one famous result by Gromov:
given a cylinder B2(r)×R2n−2, there is no mechanical motion moving the ball B2n(R) into the cylinder if
R > r. There is, however, a volume preserving map moving the ball into the cylinder (this should be easy
to imagine). (Gromov’s result is actually a little more general as it only asks for a symplectic embedding.)

2. To symplectic manifolds
To generalize to symplectic manifolds, we need to replace the phase space by a manifold that keeps key

properties of the phase space. For simplicity, we replace it by a connected manifold.

Definition (Symplectic manifold). Let M be a 2n-dimensional manifold endowed with a 2-form ω which
is:

• Closed: dω = 0
• Non-degenerate: ωn 6= 0 at any point on the manfold

The pair (M,ω) is called a symplectic manifold.

Remark. An alternate way to state the non-degeneracy condition is: for any X ∈ Γ(TM), X 6= 0, there
is a Y ∈ Γ(TM) such that ω(X, Y ) 6= 0. Yet another alternate way is that it gives an isomorphism of TM
with T ∗M via TpM 3 X 7→ ωp(X, ·) ∈ T ∗

pM .
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2.1. Examples of symplectic manifolds.

Example (Trivial Example). This is precisely the same as in the introduction. (R2n, ω0) where
ω0 = dp1 ∧ dq1 + · · ·+ dpn ∧ dqn.

Personally, I like looking at this in complex coordinates better. Letting zj = pj + iqj, we have R2n ≈ Cn

and

ω0 =
i

2

n∑
j=1

dzj ∧ dz̄j.

Now, for the prototypical example of a symplectic manifold

Example (Cotangent Bundle). Consider an n-manifold V . Its cotangent bundle, T ∗V , is a 2n-manifold
which we call M . M comes equipped with a canonical 2-form, ω = −dλ, which is decribed in local coordi-
nates as follows:
Given local coordinates (x1, ..., xn) on V , we get an associated set of local coordinates (x1, ..., xn, ξ1, ..., ξn)
on T ∗V . In these coordinates,

λ =
n∑

j=1

ξjdxj, ω = −dλ =
n∑

j=1

dxj ∧ dξj.

The pair (M,ω) is a symplectic manifold.

We can also define λ invariantly (indepenent of coordinates) as follows:
Given a point p = (x, ξ) ∈M , we define λ at p by

λp = ξ ◦ (Dπ)p

where π : T ∗V → V is the usual projection map.

Maybe a bit out of place with the flow of things so far, but here’s an important theorem in symplectic
geometry:

Theorem (Darboux’s Theorem). Let M be a 2n-manifold with a symplectic form ω. Then ω is locally
diffeomorphic to the standard form ω0 on R2n. Alternatively said: near every point in M , one can choose

local coordinates (p, q) such that ω =
n∑

j=1

dpj ∧ dqj.

What this theorem basically implies is that there is no such thing as “local symplectic geometry”.

3. Everything rephrased in the symplectic language
In classical mechanics, energy determines the evolution of the system. For our energy function, we take

a family of smooth functions, Ht, on M for t in some interval I. We can actually consider this family
as a smooth function H : M × I → R by H(x, t) = Ht(x). We call H a time dependent Hamiltonian
function. Given an Ht, we get the Hamiltonian vector field of Ht, which we denote XHt , as the solution of
the equation

ıXHt
ω = dHt. (6)

Letting t vary, we have a time dependent vector field. Now, the evolution of our system is determined by
the Hamiltonian equation

ẋ = XHt(x).

In local coordinates (p, q) on M , the Hamiltonian equation takes on the following recognizable form: q̇ = ∂H
∂p

(p, q, t)

ṗ = −∂H
∂q

(p, q, t)
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Each Hamiltonian vector field XHt has a flow ht (which we call a Hamiltonian flow). The individual ht
are called Hamiltonian diffeomorphisms, which replace our mechanical motions from earlier.

Remark. Usually, we like to work with the time 1 map of flows, but since we can reparametrize flows, any
Hamiltonian diffeomorphism can be realized as the time 1 map of some Hamiltonian flow.

To satisfy the algebraists in the room, here are some nice properties about Hamiltonian diffeomorphisms:

Proposition. The Hamiltonian diffeomorphisms form a group, Ham(M,ω), with the following properties:

(1) Ham(M,ω) is an infinite dimensional Lie group.
(2) Ham(M,ω) is non-abelian.
(3) If M is a closed manifold, then Ham(M,ω) is simple.

Now, why did we choose the symplectic form to be closed? The main reason, I suppose, is simple because
“it works”, but here is a more satisfying reason: Hamiltonian diffeomorhpisms preserve the symplectic form.
It suffices to show that LXHt

ω = 0 for all Hamiltonian vector fields to prove this claim. We have

LXHt
ω = ıXHt

dω + d(ıXHt
ω) = ıXHt

0 + d(dHt) = 0.

This is the general version of the theorem following the Liouville theorem. The nondegeneracy comes in
by making sure that we can actually solve uniquely for XHt .

4. The Arnold Conjecture
In a sense, the first theorem of symplectic geometry is something from well before its genesis. This is a

result originally stated by Poincaré in 1912 and proved by Birkhoff in 1913. It is sometimes referred to as
Poincaré’s last geometric theorem, but we will call it the Poincaré-Birkhoff theorem:

Theorem (Birkhoff 1913). Let A be an annulus, and let φ : A→ A be an area preserving homeomorphism
which preserves the boundary circles, but twists them in opposite direction. Then φ must have at least 2
fixed points.

Partially based on the Poincaré-Birkhoff theorem, in the 1960’s Arnold conjectured the following (though
not exactly in this language):

Conjecture. A Hamiltonian diffeomorphism of a compact symplectic manifold should have at least as
many fixed points as a function on the manifold must have critical points.

Let’s illustrate the power of this conjecture though an example. First, consider the Lefschetz fixed point
theorem:

Theorem. Let f : X → X be a continuous map from a compact triangulable space X to itself. Then, if
Λf 6= 0, where

Λf :=
∑
k≥0

(−1)kTr
(
f∗|Hk(X,Q)

)
,

f has at least one fixed point. If we assume in addition that X is a smooth manifold, f is a smooth map,
and all of the fixed points of f are nondegenerate (i.e. graph(f) t ∆M), then the number of fixed points of
f is at least Λf , and in addition

Λf = graph(f) ·∆.

(It’s worth pointing out that Λf is a homotopy invariant.)
Let’s consider a Hamiltonian diffeomorhpism h of the 2n-torus T2n. Since Hamiltonian diffeomorphisms

are homotopic to the identity, we have

Λf = Λ id =
∑
k≥0

(−1)kTr
(
id∗|Hk(X,Q)

)
=
∑
k≥0

(−1)kbk(T2n) = χ(T2n)

and so
Λh = χ(T2n) = 0.
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Thus, the Lefschetz fixed point theorem is useless here. However, all is not lost since, in 1983, Conley and
Zehnder proved the Arnold conjecture for the 2n-torus with the standard symplectic structure.

Theorem (Conley-Zehnder, 1983). A Hamiltonian diffeomorhpism of the standard torus T2n has at least
2n+ 1 fixed points. If all of the fixed points are nondegenerate, then it has at least 22n fixed points.

As far as I know, in its full generality, the Arnold conjecture has yet to be proven. One case in which it
is proven is when both classes [ω], c1(TM) ∈ H2

dR(M) vanish on π2(M). This was proven by Rudyak and
Oprea. Since I should probably actually prove something, let me prove the Arnold conjecture in an easy
case.

Lemma. Suppose the Hamiltonian diffeomorhpism h : (M,ω) → (M,ω) is generated by a Hamiltonian
function Ht which is independent of t. Then the Arnold conjecture holds.

Proof. Fixed points of the Hamiltonian diffeomorphism h correspond to zeroes of the Hamiltonian vector
field XH . Zeroes of XH in turn correspond to critical points of H. �

References

[1] Anna Cannas da Silva, Lectures on Symplectic Geometry. First edition, Springer, 2001.
[2] Dusa McDuff and Dietmar Salamon, Introduction to Symplectic Topology. Second edition, Oxford Science Publica-

tions, 1998.
[3] Leonid Polterovich, The Geometry of the Group of Symplectic Diffeomorphisms. First edition, Birkhäuser, 2001.


