Solutions Math 220 HW # 9 November 14, 2018

Exercise 1. A function $f : \mathbb{Z} \to \mathbb{Z}$ is defined by f(n) = 2n + 1. Determine whether f is (a) injective, (b) surjective. Give proof or a counterexample for your claims.

Proof. f is injective, but not surjective. To see that f is not surjective, observe that 2n + 1 is always odd for integers n, so 8, for example, is not in the range of f. To see that f is injective, suppose f(m) = f(n). Then

$$f(m) = f(n)$$

$$\implies 2m + 1 = 2n + 1$$

$$\implies 2m = 2n$$

$$\implies m = n$$

Exercise 2. A function $f : \mathbb{Z} \to \mathbb{Z}$ is defined by f(n) = n - 3. Determine whether f is (a) injective, (b) surjective. Give proof or a counterexample for your claims.

Proof. f is a bijection. To see that f is surjective, given an integer $n \in \mathbb{Z}$, observe that f(n+3) = (n+3) - 3 = n. To see that f is injective, suppose f(m) = f(n). Then

$$f(m) = f(n)$$

$$\implies m - 3 = n - 3$$

$$\implies m = n$$

Exercise 3. How many integers must you pick in order to be sure that at least two of them have the same remainder when divided by 15?

Proof. When dividing by 15, there are 15 possible remainders: 0, 1, ..., 14. So if we choose 16 integers, because there are only 15 possible choices for remainders, at least two of them must have the same remainder by the Pigeonhole Principle.

Exercise 4. Let $X = \{1, 2, 3, 4\}$ and consider the functions $f, g, h : X \to X$ given by

 $f = \{(1,2), (2,1), (3,1), (4,4)\}$ $g = \{(1,2), (2,2), (3,1), (4,3)\}$ $h = \{(1,1), (2,3), (3,1), (4,3)\}$

(a) Find the following compositions: $f \circ g$, $h \circ f$, and $g^2 = g \circ g$.

(b) Find the compositions: $h \circ g \circ f$ and $f \circ g \circ h$. Solution.

$$\begin{array}{ll} (a) & \bullet \ f \circ g = \{(1,1),(2,1),(3,2),(4,1)\} \\ & \bullet \ h \circ f = \{(1,3),(2,1),(3,1),(4,3)\} \\ & \bullet \ g \circ g = \{(1,2),(2,2),(3,2),(4,1)\} \\ & \bullet \ h \circ g \circ f = \{(1,3),(2,3),(3,3),(4,1)\} \end{array}$$

• $f \circ g \circ h = \{(1,1), (2,2), (3,1), (4,2)\}$

Exercise 5. Consider the functions $f, g : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ given by f(m, n) = (3m-4n, 2m+n)and g(m, n) = (5m + n, m). Find formulas for $f \circ g$ and $g \circ f$.

Solution.

$$(f \circ g)(m, n) = f(5m + n, m)$$

= $(3(5m + n) - 4(m), 2(5m + n) + (m))$
= $(11m - 3n, 11m + 2n)$
 $(g \circ f)(m, n) = g(3m - 4n, 2m + n)$
= $(5(3m - 4n) + (2m + n), 2m + n)$
= $(17m - 19n, 2m + n)$

Exercise 6. Let X, Y, Z be sets and suppose $f : X \to Y$ and $g : Y \to Z$. Suppose that $g \circ f : X \to Z$ is a bijection. Prove that f is an injection and g is a surjection. Proof.

- <u>*f* is injective</u> Suppose $f(x_1) = f(x_2)$. Then $g(f(x_1)) = g(f(x_2))$, which is equivalent to $(g \circ f)(x_1) = (g \circ f)(x_2)$. But since $g \circ f$ is injective, we have $x_1 = x_2$. Theorefore f is injective.
- <u>g is surjective</u> Let $z \in Z$. Since $g \circ f$ is surjective, there is an $x \in X$ such that $(g \circ f)(x) = z$. Set y = f(x). Then $g(y) = g(f(x)) = (g \circ f)(x) = z$. Thus g is surjective.

Exercise 7. Let X and Y be sets and let $A \subset X$. Is $A = f^{-1}(f(A))$? If so, give a proof, if not, give a counter example and prove whichever of $A \subset f^{-1}(f(A))$ or $A \supset f^{-1}(f(A))$ are true.

Proof.

$$x \in A \implies f(x) \in f(A) \implies x \in f^{-1}(f(A))$$

So $A \subset f^{-1}(f(A))$, however the other direction is not true. Consider the function $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2$. Let $A = [0, \infty)$. Then $f(A) = [0, \infty)$, however $f^{-1}(f(A)) = (-\infty, \infty) \neq A$.

Exercise 8. Prove that the function $f : \mathbb{R} \setminus \{2\} \to \mathbb{R} \setminus \{5\}$ given by $f(x) = \frac{5x+1}{x-2}$ is bijective. What is the inverse function $f^{-1} : \mathbb{R} \setminus \{5\} \to \mathbb{R} \setminus \{2\}$?

Proof. Let $x, y \in \mathbb{R} \setminus \{2\}$ and suppose f(x) = f(y). Then

$$f(x) = f(y)$$

$$\implies \frac{5x+1}{x-2} = \frac{5y+1}{y-2}$$

$$\implies (5x+1)(y-2) = (5y+1)(x-2)$$

$$\implies 5xy+y-10x-2 = 5yx+x-10y-2$$

$$\implies y-10x = x-10y$$

$$\implies 11y = 11x$$

$$\implies x = y$$

Therefore f is injective.

Now let $y \in \mathbb{R} \setminus \{5\}$. Set f(x) = y and try to solve for y:

$$y = \frac{5x+1}{x-2}$$

$$\implies y(x-2) = 5x+1$$

$$\implies yx - 2y = 5x+1$$

$$\implies yx - 5x = 2y+1$$

$$\implies x = \frac{2y+1}{y-5}$$

Since $\frac{2y+1}{y-5} \in \mathbb{R} \setminus \{2\}$ and $f\left(\frac{2y+1}{y-5}\right) = y$, we have that f is surjective. Observing the computation to show f is surjective, we see the inverse must be

$$f^{-1}(x) = \frac{2x+1}{x-5}.$$

Exercise 9. Recall that for an integer $c \in \mathbb{Z}$, the set $c\mathbb{Z} = \{cn | n \in \mathbb{Z}\}$. Show that $3\mathbb{Z}$ and $5\mathbb{Z}$ have the same cardinality.

4

Proof. There are bijections $f : \mathbb{Z} \to 3\mathbb{Z}, x \mapsto 3x$, and $g : \mathbb{Z} \to 5\mathbb{Z}, x \mapsto 5x$, as described in class. Since f is a bijection, $f^{-1} : 3\mathbb{Z} \to \mathbb{Z}$ is a bijection as well. Therefore $g \circ f : 3\mathbb{Z} \to 5\mathbb{Z}$ is a bijection, therefore $3\mathbb{Z}$ and $5\mathbb{Z}$ have the same cardinality.

Exercise 10. Prove that the rational numbers, \mathbb{Q} , are countable. (You may use the fact that the union of two countable sets is countable.)

Proof. Recall from class that \mathbb{Q}^+ is countable. The function $f : \mathbb{Q}^+ \to \mathbb{Q}^-$ given by f(x) = -x is a bijection between the two sets, so \mathbb{Q}^- is countable as well. Since $\mathbb{Q} = \mathbb{Q}^- \cup \mathbb{Q}^+ \cup \{0\}$, it is the union of two countably infinite sets and a finite set, and therefore must be countable as well. \Box