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Introduction

This book started out as lecture notes for a class I taught on Ordinary Differential Equations back in the
summer of 2010 at the University of California, Riverside. My main motivation was for the students to have
a text to use that was not outrageously priced (it was $150 for just a used version of the text!). My general
philosophy is that students should not have to go bankrupt buying textbooks, which is why I intend to keep
the price of this text as minimal as possible. I also wanted to write a text that just got to the point, while not
sacrificing essential details. Many of the students taking this class were not interested in the detailed proofs
of all the results, and as such, this text was not written with rigorous proof in mind. I included proofs of
easy results and of some essential results, but most of the more involved proofs were either omitted, or left to
exercises. Some easy proofs were also left as exercises to help foster the students’ proof skills. Given all this,
the present text is not appropriate for anything other than a differential equations class that has a class on
single variable calculus as an immediate prerequisite. A better text for a more thorough and detailed survey
would be [1].

I suppose a brief outline of the book is in order. Chapter 0 begins by covering the immediate prerequisites
to be able to take a course in differential equations. Not everything in this chapter is usually covered by the
time a typical student takes this class, e.g., Sections 0.4-0.7. In fact, one could rightfully say that Section
0.7 is actually a topic for this class, with which I agree, but I think introducing the topic of a slope field is
more appropriate for a prerequisite chapter, then its use is brought in when talking about drawing families of
solutions. Chapter 1 covers many different types of first order differential equations, both linear and nonlinear.
It ends with a proof of the existence and uniqueness theorem for solutions of first order ODEs, which can be
skipped without losing any continuity, but also sacrificing rigor (which is probably ideal in a course targeted
at engineers). In Chapter 2, we look at homogeneous and non-homogeneous second order linear differential
equations, and various ways of solving them, such as the method of undetermined coefficients and variation
of parameters. We introduce a bit of rigor with Section 2.2 where we talk about the Wronskian. We close this
chapter with a section on special types of nonlinear second order ODEs, namely those that can be reduced
back down to first order ones, and a section on boundary value problems. In Chapter 3, we talk about higher
order (≥ 3) linear differential equations, and we generalize the methods of undetermined coefficients and
variation of parameters to this case. Chapter 4 covers applications of differential equations from many dif-
ferent fields: orthogonal trajectories (math), mixing problems and radioactive decay (chemistry), compound
interest (economics), mechanics and E&M (physics/engineering). Finally, in Chapter 5, we cover my favorite
topic, that of the Laplace transformation. We cover the transform itself, properties of it, and give an informal
treatment of the inverse Laplace transformation (to give a formal treatment, we would need complex analysis,
which is beyond the scope of this book). In the latter half of the chapter we use the Laplace transformation
to find solutions of some initial value problems, and we use it to solve some Volterra equations, or as they
are sometimes referred to as, integro-differential equations. In the next chapter, Chapter 6, we discuss series
solutions to differential equations, starting with a discussion of Taylor series. This is necessary since the
methods developed earlier in the book might not be sufficient to solve a given equation, and using series is
one, rather powerful, way to get around it. The problem here is we have to watch out for singular points

(points that could make the differential equation undefined, e.g., x = 1 in y′′ +
x

x− 1
y′ + y = 2x (we always

want the highest derivative to have a coefficient of 1)). In Chapter 7, we give an introduction to solving
systems of first order linear differential equations by covering 2 × 2 systems of them. We solve them both
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by force (using calculus only) and by using the more sophisticated method of linear algebra. This chapter
ends with an application to the two body problem. In the final chapter we give some ways to get numerical
approximations to solutions of differential equations.

I would like to thank all of the students in the class for putting up with my notes! I would especially like to
thank those who made suggestions or corrections. I would also like to thank my grader for the course, Spencer
Shepard, for notifying me of several typos, and for coming in to the office at 11pm to help me finish grading
the final for this course. I am sure there are still many more typos, grammar errors, unclear statements, etc.
contained in this book, and I warmly welcome you to email me with any suggestions you may have to make
the text better! You can email me at edwardburkard@rmc.edu (at least for now). Writing this text has been
a long journey. I started and wrote a majority of it for the class I taught, but there were several more topics I
wanted to include, and as the start and end dates show, graduate school had plans for me other than working
on this book.

Hopefully this book is as useful as I intend it to be.

Edward Burkard
Begun: April 2010, Riverside, CA

Completed: ??



Contents

0 Prerequisites 1
0.1 Precalculus Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

0.1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

0.1.2 Trigonometric Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

0.2 Differentiation Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

0.2.1 The Leibniz Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

0.2.2 Chain Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

0.2.3 Implicit Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

0.3 Integration Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

0.3.1 u-Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

0.3.2 Integration by Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

0.3.3 Trigonometric Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

0.3.4 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

0.4 Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

0.4.1 Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

0.4.2 Issues of Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

0.4.3 Reindexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

0.4.4 Power Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

0.4.5 Geometric Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

0.4.6 Miscellany . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

0.5 Complex Numbers and Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

0.5.1 Complex Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

0.5.2 Euler’s Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

0.6 Multi-Variable Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

0.6.1 Partial Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

0.6.2 Integration of Multivariable Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

0.7 Miscellaneous Things . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

0.7.1 Slope Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1 First-Order Differential Equations 35
1.1 Introduction to Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.2 Seperable Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

1.3 Exact Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

1.3.1 Exact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

1.3.2 Solving Exact Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

1.3.3 Integrating Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

1.4 Linear Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

1.4.1 Variation of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

1.4.2 Integrating Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

iii



iv CONTENTS

1.5 Bernoulli Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

1.6 Homogeneous Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

1.7 Existence and Uniqueness of Solutions to Differential Equations . . . . . . . 65

1.7.1 The Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

1.8 Additional Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2 Second-Order Differential Equations 71
2.1 Constant Coefficient Homogeneous Linear Equations . . . . . . . . . . . . . . . 71

2.1.1 The Characteristic Polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.1.2 Distinct Real Roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.1.3 Repeated Real Roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.1.4 Complex Roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.2 The Wronskian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

2.2.1 General Homogeneous Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

2.2.2 The Wronskian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

2.3 Non-Homogeneous Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

2.3.1 Superposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

2.3.2 Introduction to Undetermined Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . 84

2.4 Reduction of Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

2.5 Cauchy-Euler Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

2.5.1 Indicial Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

2.5.2 Distinct Real Roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

2.5.3 Repeated Real Roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

2.5.4 Complex Roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

2.6 The Method of Undetermined Coefficients . . . . . . . . . . . . . . . . . . . . . . . 95

2.7 Variation of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

2.8 Some Non-Linear Second Order Equations . . . . . . . . . . . . . . . . . . . . . . . 103

2.8.1 Missing Dependent Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

2.8.2 Missing Independent Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

2.9 Additional Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3 Higher-Order Differential Equations 111
3.1 General nth order Linear Differential Equations . . . . . . . . . . . . . . . . . . . 111

3.2 The Method of Undetermined Coefficients . . . . . . . . . . . . . . . . . . . . . . . 112

3.3 Variation of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

3.4 Additional Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4 Some Applications of Differential Equations 115
4.1 Orthogonal Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.2 Mixing Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.3 Modeling Growth and Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.4 Topics in Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.4.1 Some Useful Stuff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.4.2 Simple Spring Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.4.3 Motion Under a Central Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.5 Topics in Electricity and Magnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.5.1 The RLC Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.6 Additional Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126



CONTENTS v

5 Laplace Transformations 127
5.1 The Laplace Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.1.1 Definition of the Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.1.2 Examples of the Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.2 Properties of the Laplace Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.3 Some Special Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.3.1 Step Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.3.2 Dirac-Delta Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.3.3 Periodic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.4 The Inverse Laplace Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.5 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.6 Application to Initial Value Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.6.1 1st Order IVPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.6.2 2nd Order IVPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.7 Additional Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6 Series Solutions to Differential Equations 153
6.1 Taylor Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.2 Ordinary Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
6.3 Singular Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.4 Additional Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7 Systems of First-Order Linear Differential Equations 157
7.1 Eigenvalues and Eigenvectors of a 2× 2 Matrix . . . . . . . . . . . . . . . . . . . 157

7.1.1 Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
7.1.2 Eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.2 2× 2 Systems of First-Order Linear Differential Equations . . . . . . . . . . . 160
7.2.1 Calculus Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
7.2.2 Linear Algebra Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.3 Repeated Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
7.4 The Two Body Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
7.5 Additional Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

8 Numerical Methods 167
8.1 Euler’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
8.2 Taylor Series Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
8.3 Runge-Kutta Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Index 170

Bibliography 172



Chapter 0

Prerequisites

This chapter is meant to give an overview of the material you should have learned at some point in the
prerequisite courses. However, there is material in this chapter that you might not have encountered yet. The
material that is in the prerequisite courses is mostly just included as a reminder, but the material that might
be new has more than just examples.

0.1 Precalculus Topics

0.1.1 Partial Fractions

Partial fractions is a topic that seems to haunt students because they perceive it as hard because it involves
more than just trivial plug and chug. However it is quite an algorithmic process, and as such, it is really not
as difficult as most people might think.

By the Fundamental Theorem of Algebra we can factor any polynomial into a product of linear terms
and irreducible quadratics. We will use this fact to decompse rational functions by the method of Partial
Fractions. The process of partial fractions is essentially the reverse process of adding fractions. I believe
that the best way to accomplish the understanding of the process of partial fractions is through examples.

Linear Terms in the Denominator

These are examples that contain no irreducible quadratics in the denominator.

Distinct Terms

Example 0.1. Decompose
x− 7

x2 + 2x− 15
into partial fractions.

Solution. First we should factor the bottom:

x2 + 2x− 15 = (x+ 5)(x− 3).

Now rewrite the fraction with the factored bottom:

x− 7

x2 + 2x− 15
=

x− 7

(x+ 5)(x− 3)
.

Next we perform the operation of partial fractions:

x− 7

(x+ 5)(x− 3)
=

A

x+ 5
+

B

x− 3
.

1



2 CHAPTER 0. PREREQUISITES

Then we solve for A and B. To do this we multiply through by the denominator on the left side of the
equality above (this is actually the LCD of the fractions on the right side). Multiplying through and gathering
like terms we get:

x− 7 = A(x− 3) +B(x+ 5) = (A+B)x+ (−3A+ 5B).

Now equating coefficients of like terms we get the system of equations:{
A + B = 1
−3A + 5B = −7

Which can easily be solved to get:

A =
3

2
and B = −1

2

Thus the partial fraction decomposition is:

x− 7

x2 + 2x− 15
=

3
2

x+ 5
−

1
2

x− 3
.

�

Repeating Terms

Example 0.2. Decompose
2x2 + 5

(x+ 2)2(x− 1)
into partial fractions.

Solution. This looks a bit more complex than the last example, but have no fear, we can still do it!
First, as before, rewrite the fraction in its decomposed form:

2x2 + 5

(x+ 2)2(x− 1)
=

A

x+ 2
+

B

(x+ 2)2
+

C

x− 1
.

Multiplying through by the denominator on the left and gathering like terms we get:

2x2 + 5 = A(x+ 2)(x− 1) +B(x− 1) + C(x+ 2)2

= A(x2 + x− 2) +B(x− 1) + C(x2 + 4x+ 4)

= (A+ C)x2 + (A+B + 4C)x+ (−2A−B + 4C)

This gives us a system of equations which, as before, except this is a 3× 3 system:
A + C = 2
A + B + 4C = 0
−2A − B + 4C = 5

Adding together all three equations we get:

9C = 7 ⇒ C =
7

9

Using the first equation we get:

A = 2− C = 2− 7

9
=

11

9
And the second equations gives:

B = −A− 4C = −11

9
− 28

9
= −39

9
= −13

3

Thus the decomposition is:

2x2 + 5

(x+ 2)2(x− 1)
=

11
9

x+ 2
−

13
3

(x+ 2)2
+

7
9

x− 1
.
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�

Quadratic Terms in the Denominator

There are many different combinations involving quadratic terms we can have in the denominator at this
point: distinct linear and quadratic terms, repeating linear terms and distinct quadratic terms, no linear
terms and distinct quadratic terms, no linear terms and repeating quadratic terms, distinct linear terms and
repeating quadratic terms, and repeating linear and quadratic terms. Here I will give an example of the first
and fourth one:

Distinct Linear and Quadratic Terms

Example 0.3. Decompose
5x2 − 7x+ 15

(2x+ 1)(4x2 + 3)
into partial fractions.

Solution. As always, begin by decomposing the fraction:

5x2 − 7x+ 15

(2x+ 1)(4x2 + 3)
=

A

2x+ 1
+
Bx+ C

4x2 + 3

Then multiply through by the LCD and gather like terms:

5x2 − 7x+ 15 = A(4x2 + 3) + (Bx+ C)(2x+ 1)

= (4A+ 2B)x2 + (B + 2C)x+ (3A+ C)

Equating coefficients we get the system:
4A + 2B = 5

B + 2C = −7
3A + C = 15

You can check that we have:

A =
79

16
B = −59

8
C =

3

16

�

No Linear Terms and Repeating Quadratic Terms

Example 0.4. Decompose
8s3 + 13s

(s2 + 2)2
into partial fractions.

Solution. Decompose:
8s3 + 13s

(s2 + 2)2
=
As+B

s2 + 2
+

Cs+D

(s2 + 2)2

Multiply by the LCD and collect like terms:

8s3 + 13s = (As+B)(s2 + 2) + (Cs+D)

= As3 + 2As+Bs2 + 2B + Cs+D

= (A)s3 + (B)s2 + (2A+ C)s+ (D)
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Thus we have the system of equations:
A = 8

B = 0
2A + C = 13

D = 0

It is incredibly easy to see that:

A = 8 B = 0 C = −3 D = 0

And so the decomposition is:
8s3 + 13s

(s2 + 2)2
=

8s

s2 + 2
− 3s

(s2 + 2)2

�

0.1.2 Trigonometric Identities

Trigonometry... It seems to be the main shortcoming of many students... Some people don’t do well with
it because they think that they need to memorize all these different formulas, however you really only need
to know one, the sum formula for cos:

cos(u+ v) = cos(u) cos(v)− sin(u) sin(v).

Here is an extensive, but not complete, list of the formulas, mostly intended for quick reference:

a. sin2 θ + cos2 θ = 1

b. 1 + tan2 θ = sec2 θ

c. 1 + cot2 θ = csc2 θ

d. sin(−θ) = − sin(θ) (i.e. sin is odd)

e. cos(−θ) = cos(θ) (i.e. cos is even)

f. sin(θ − π
2 ) = − cos(θ)

g. cos(θ − π
2 ) = sin(θ)

h. cos(u+ v) = cos(u) cos(v)− sin(u) sin(v)

i. cos(u− v) = cos(u) cos(v) + sin(u) sin(v)

j. sin(u+ v) = sin(u) cos(v) + cos(u) sin(v)

k. sin(u− v) = sin(u) cos(v)− cos(u) sin(v)

l. sin(2θ) = 2 sin θ cos θ

m. cos(2θ) = cos2 θ − sin2 θ

n. cos(2θ) = 2 cos2 θ − 1

o. cos(2θ) = 1− 2 sin2 θ
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p. sin
θ

2
= ±

√
1− cos θ

2

q. cos
θ

2
= ±

√
1 + cos θ

2

To prove my point I will prove some of the above identities using identity h:

h ⇒ a)

1 = cos(0) = cos(x− x)

= cos[x+ (−x)]

= cos(x) cos(−x)− sin(x) sin(−x)

= cos(x) cos(x)− sin(x)(− sin(x))

= cos2 x+ sin2 x

h ⇒ f) First note that sin
(
θ − π

2

)
= − cos(θ) is equivalent to − sin(θ − π

2 ) = cos(θ). Then:

cos(θ) = cos
[(
θ − π

2

)
+
π

2

]
= cos

(
θ − π

2

)
cos
(π

2

)
− sin

(
θ − π

2

)
sin
(π

2

)
= cos

(
θ − π

2

)
(0)− sin

(
θ − π

2

)
(1)

= − sin
(
θ − π

2

)

Exercises

Find the partial fraction decomposition of the following fractions:

1.
−x+ 5

(x− 1)(x+ 1)

2.
2s+ 1

s2 + s

3.
2v − 3

v3 + 10v

4.
−4x

3x2 − 4y + 1

5.
2s+ 2

s2 − 1

6.
4z2 + 3

(z − 5)3
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7.
2x2 − 6

x3 + x2 + x+ 1

Prove the following identities:

8. tan 2θ =
2 tan θ

1− tan2 θ

9. tan(u− v) =
tanu− tan v

1− tanu tan v

10. sinu sin v = 1
2 [cos(u− v)− cos(u+ v)]

11. cosu sin v = 1
2 [sin(u+ v)− sin(u− v)]

12.
cos t

1− sin t
=

1 + sin t

cos t

13. sec θ − cos θ = tan θ sin θ

14. cos4 x− sin4 x = cos 2x
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0.2 Differentiation Techniques

0.2.1 The Leibniz Rule

The Leibniz rule (a.k.a. the product rule) is arguably one of the most important rules involving differ-
entiation. While I cannot do justice to it here, I will present it with an example of its application.

Theorem 0.5 (The Leibniz Rule). Suppose that f and g are differentiable functions, then:

d

dx
[f(x)g(x)] = f ′(x)g(x) + f(x)g′(x)

Example 0.6. Differentiate:
f(x) = ex sin(x)

Solution. Simply follow the Leibniz rule:

f ′(x) =
d

dx
[(ex) (sin(x))]

=
d

dx
[ex] sin(x) + ex

d

dx
[sin(x)]

= ex sin(x) + ex cos(x)

�

0.2.2 Chain Rule

The chain rule is another one of the most important rules regarding differentiation. This rule deals with
taking derivatives of compositions of functions.

Theorem 0.7 (Chain Rule). Suppose that f and g are differentiable functions and the composition f ◦ g
makes sense. Then:

(f ◦ g)′ (x) = (f(g(x)))′ = f ′(g(x)) · g′(x).

In other notation, if y = f(u) and u = g(x) with f and g differentiable, then the chain rule can be written as:

dy

dx
=
dy

du
· du
dx
.

The second way of writing this is useful for implicit differentiation.

Example 0.8. Find the derivative of:

h(x) =
√
x2 + 1.

Solution.

h′(x) =
d

dx

√
x2 + 1

=
1

2

1√
x2 + 1

· d
dx

(
x2 + 1

)
=

2x

2
√
x2 + 1

=
x√

x2 + 1

�
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0.2.3 Implicit Differentiation

Sometimes we would like to take a derivative of an equation that is not a function, such as x2 + y2 = 1,
or even more fancy y5 + x2y3 = 1 + x4y. Thankfully, due to the chain rule, if we think of y as a function of
x, we can still differentiate these equations using a method known as Implicit Differentiation. Let’s take
the derivative of the second equation above:

Example 0.9. Find
dy

dx
if:

y5 + x2y3 = 1 + x4y.

Solution. By implicit differentiation and the Leibniz rule we have:

5y4
dy

dx
+ 2xy3 + x2(3y2)

dy

dx
= 4x3y + x4

dy

dx
.

Now gather all terms with
dy

dx
in them on one side, and everything else on the other side:

5y4
dy

dx
+ 3x2y2

dy

dx
− x4 dy

dx
= 4x3y − 2xy3.

Factor out
dy

dx
and isolate it:

dy

dx

(
5y4 + 3x2y2 − x4

)
= 4x3y − 2xy3

dy

dx
=

4x3y − 2xy3

5y4 + 3x2y2 − x4

�

Exercises

Find the derivative of the following functions:

1. f(x) =
(
x3 + 2x2 − 3

)4
2. y = sin(cos(x))

3. g(x) =
1√

x2 + 1

4. h(x) =
(f(x))3√
g(x)

, where f and g are differentiable functions

Use implicit differentiation to find y′:

5. x2 + y2 = 16

6. x3 cos(y) + y3 sin(x) = 9

7. sin(xy) = x2 − y
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Further study:

8. Notice that I made no mention of the so called quotient rule above. That is because it is a consequence
of the Leibniz and chain rules and not really a ”rule” in this respect. In this exercise you will prove the
quotient rule using the Leibniz and chain rules.
Suppose that f and g are differentiable functions and that g(x) 6= 0 for any real number x. Show that

d

dx

[
f(x)

g(x)

]
=
f ′(x)g(x)− f(x)g′(x)

[g(x)]2

by rewriting
f(x)

g(x)
as f(x) · [g(x)]−1, then taking the derivative.

9. Prove the ”Triple Product Rule”: Let f , g, and h be differentiable functions, then

d

dx
[f(x)g(x)h(x)] = f ′(x)g(x)h(x) + f(x)g′(x)h(x) + f(x)g(x)h′(x).

10. Verify the following equation for differentiable functions f and g:

d2

dx2
[f(x)g(x)] = f ′′(x)g(x) + 2f ′(x)g′(x) + f(x)g′′(x).
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0.3 Integration Techniques

0.3.1 u-Substitution

The (usual) first and easiest of the typical integration techniques is known as u-Substitution. u is really
just a generic ”dummy” variable, in fact this technique is really just a consequence of something known as
”change of variables”.

Theorem 0.10 (u-Substitution). Suppose u = g(x) is a differentiable function whose range is an interval,
and that f is a function that is continuous on the range of g, then∫

f(g(x))g′(x) dx =

∫
f(u) du.

Example 0.11. Find the following integral: ∫
tan(x) dx.

Solution. Since ∫
tan(x) dx =

∫
sin(x)

cos(x)
dx,

if we let u = cos(x), then du = − sin(x), and so we have:∫
sin(x)

cos(x)
dx = −

∫
1

u
du

= − ln |u|+ C.

So substituting back in for u we get: ∫
tan(x) dx = − ln |cos(x)|+ C.

�

0.3.2 Integration by Parts

For derivatives we have the the product rule. Recall that integration is an attempt to go backwards from
differentiation. So you might hope we have a backward process for the product rule... This is more or less
true, and this technique is called Integration by Parts.

Theorem 0.12 (Integration by Parts). Suppose that f and g are differentiable functions and that f ′ and g′

are integrable functions. Then ∫
f(x)g′(x) dx = f(x)g(x)−

∫
f ′(x)g(x) dx.

A more typical presentation of the integration by parts technique is the following: with f and g as in the
theorem above, let u = f(x) and v = g(x), then du = f ′(x) dx and dv = g′(x) dx, so by substituting into the
above equation we get: ∫

u dv = uv −
∫
v du.
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Example 0.13. Find the following integral: ∫
x cos(x) dx.

Solution. Let u = x and dv = cos(x) dx (a word of wisdom here, do not forget to include the dx when you
choose dv, otherwise you won’t be able to find v because you can’t integrate!), then du = dx and v = sin(x).
So using integration by parts we get:∫

x cos(x) dx = x sin(x)−
∫

sin(x) dx = x sin(x) + cos(x) + C.

�

0.3.3 Trigonometric Substitution

The technique of Trigonometric Substitution (or ”trig sub” for short) is mainly based off of the
following two trig identities:

sin2 θ + cos2 θ = 1,

and

1 + tan2 θ = sec2 θ.

Suppose we had an integral involving one of the three expressions:
√
a2 − x2,

√
a2 + x2, or

√
x2 − a2,

where a is any nonzero positive real number. How would we solve these integrals? u-substitution won’t work,
integration by parts is hopeless... so what do we do? Notice that the above two identities can be rewritten
as:

(a sin θ)2 + (a cos θ)2 = a2,

and

a2 + (a tan θ)2 = (a sec θ)2.

We can actually use this to our advantage, for example if we let x = a sin θ, the integral

∫ √
a2 − x2 dx

becomes

∫
a cos θ

√
a2 − (a sin θ)2 dθ =

∫
a cos θ

√
(a cos θ)2 dθ =

∫
a2 cos2 θ dθ which is a managable integral.

There is a minor technicality we need to worry about here, and that is whether the substitution is one-to-one,

which can be achieved by demanding that θ lie in the interval
[
−π

2
,
π

2

]
. The following table summarizes the

trig substitutions (a > 0):

Expression in Integral Substitution to Use√
a2 − x2 x = a sin θ, −π

2
≤ θ ≤ π

2√
a2 + x2 x = a tan θ, −π

2
< θ <

π

2√
x2 − a2 x = a sec θ, 0 ≤ θ < π

2
or π ≤ θ < 3π

2

Example 0.14. Find the integral: ∫
x3
√

9− x2 dx.



12 CHAPTER 0. PREREQUISITES

Solution. Seeing the expression
√

9− x2 suggests that we should make a substitution of the form x = 3 sin θ

where θ ∈
[
−π

2
,
π

2

]
. Plugging this in the integral we get:∫

x3
√

9− x2 dx =

∫
(3 sin θ)3

√
9− (3 sin θ)2 dx

=

∫
27 sin3 θ

√
9 cos2 θ(3 cos θ) dθ

= 81

∫
sin3 θ cos2 θ dθ

= 81

∫
sin θ sin2 θ cos2 θ dθ

= 81

∫
sin θ(1− cos2 θ) cos2 θ dθ

= 81

∫
sin θ(cos2 θ − cos4 θ) dθ

Now make the substitution u = cos θ to get:

81

∫
sin θ(cos2 θ − cos4 θ) dθ = −81

∫
u2 − u4 du

= −81

(
u3

3
− u5

5

)
+ C

= −27u3 +
81

5
u5 + C

= −27 cos3 θ +
81

5
cos5 θ + C.

Now θ = arcsin
x

3
and cos

(
arcsin

x

3

)
=

1

3

√
9− x2 (to see this last equality, draw a triangle) so we (finally)

get:

−27 cos3 θ +
81

5
cos5 θ + C = −(9− x2)

3
2 +

1

15
(9− x2)

5
2 + C,

so that ∫
x3
√

9− x2 dx = −(9− x2)
3
2 +

1

15
(9− x2)

5
2 + C.

�

This last problem was quite admittedly pretty intense, but it was chosen since it illustrates many concepts.

0.3.4 Partial Fractions

Sometimes we wish to integrate rational functions, and usually a u-substitution or other tricks will not
work, so we try another method, the method of Partial Fractions. The general idea here is to break a
rational function that we cannot integrate with the usual tricks down into something that we can.

Example 0.15. Compute the following integral:∫
x− 7

x2 + 2x− 15
dx.

Solution. In Example 0.1 of Section 0.1 we saw that

x− 7

x2 + 2x− 15
=

3

2x+ 10
− 1

2x− 6
.
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Making this substitution into the integral we get:∫
x− 7

x2 + 2x− 15
dx =

∫ (
3

2x+ 10
− 1

2x− 6
dx

)
=

3

2
ln |2x+ 10| − 1

2
ln |2x− 6|+ C.

�

Exercises

Evaluate the following integrals:

1.

∫
x(x2 − 1) dx

2.

∫
cosx

sin2 x
dx

3.

∫
x3
√
x2 + 1 dx (Hint: You do not need trig substitution to do this one.)

4.

∫
x
√

1− x2 dx

5.

∫
1

x2
√

16x2 − 1
dx

6.

∫
sec3 θ dθ

7.

∫
x2 cosx dx

8.

∫
ex sinx dx

9.

∫
z2

3z + 2
dz

10.

∫
x+ 1

x2 − x− 12
dx

Further Study:

11. Earlier it was mentioned that the technique of integration by parts is going backwards from the Leibniz
rule. In this exercise you will show that.
Let f and g be as in the statement of integration by parts and start with the equation for the Leibniz
rule for f(x)g(x):

d

dx
[f(x)g(x)] = f ′(x)g(x) + f(x)g′(x)

and arrive at the (first) equation for integration by parts:∫
f(x)g′(x) dx = f(x)g(x)−

∫
f ′(x)g(x) dx

by integrating both sides of the equation for the Liebniz rule.
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0.4 Series

0.4.1 Series

Let’s begin with a sequence an of real numbers. That is, a list of real numbers:

a1, a2, a3, ...

Now we add them up:

a1 + a2 + a3 + · · · =
∞∑
n=1

an.

Definition 0.16 (Series). A sum of the type above is called an infinite series. It is also possible to have a

finite series, i.e., a series of the form
m∑
n=1

an for some natural number m.

So, informally speaking, a series is just a (in general really big) sum of numbers. Here are some examples
of series:

Example 0.17.

(a)
∞∑
n=1

1

n

(b)

∞∑
n=0

(
1

3

)n

(c)
∞∑
n=1

(−1)n

n!

0.4.2 Issues of Convergence

Sure we can add up a bunch of numbers, but a more interesting question is: When is the sum finite, that is,
convergent?

Definition 0.18 (Convergence of a Series). Let S be a real number and
∞∑
n=1

an a series. We say that the

series converges to S if for all ε > 0 there is a number N such that for all m ≥ N :∣∣∣∣∣
m∑
n=1

an − S

∣∣∣∣∣ < ε.

A series which is not convergent is said to diverge.

Another way of looking at this, and perhaps more practical, is to define a sequence {Sm} of partial sums
using the series in the following way. Let

Sm =

m∑
n=1

an,

then the sum converges if the limit of the sequence {Sm} exists, that is:

−∞ < lim
m→∞

Sm <∞.

One thing that is a necessary requirement for a series to converge, but is by no means sufficient is that
limn→∞ an = 0.
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0.4.3 Reindexing

Reindexing a series is a simple concept, yet it will be invaluable in Chapter 6 when we solve differential
equations using series. To reindex a series is simply to get it to start at a different number. Suppose we

have the series
∞∑
n=1

an and we want the series to start at n = 3. We want to end up with the same series, so

we need to compensate. Suppose our new series is

∞∑
n=3

bn; since 3 − 1 = 2, we are adding 2 to the starting

position of the old sum. Thus we must make sure that: b3 = a1, b4 = a2, b5 = a3, etc.. Thus, in general, we
have that bn = an−2 so that

∞∑
n=1

an =
∞∑
n=3

an−2.

In general, if our series starts at n = 1 we can get it to start at 1 + r (r can be positive or negative!) by
simply changing an to an−r. That is,

∞∑
n=1

an =
∞∑

n=1+r

an−r.

This equality solidifies the idea that however much you add to the starting point of the sum, you have to
subtract from the n′s on the inside of the sum.

Example 0.19. Reindex the series
∞∑
n=1

(−1)n

n!2n
to start at n = 7.

Solution. In this series, we have

an =
(−1)n

n!2n
.

Since 7 − 1 = 6, using the rule above we are increasing the index by 6, so we have to replace an with an−6.
So our final answer is:

∞∑
n=1

(−1)n

n!2n
=
∞∑
n=7

(−1)n−6

(n− 6)!2n−6
=
∞∑
n=7

(−1)−6

2−6
(−1)n

(n− 6)!2n
=
∞∑
n=7

(−1)n64

(n− 6)!2n
,

�

0.4.4 Power Series

A power series is essentially a polynomial with infinitely many terms. Formally:

Definition 0.20 (Power Series). Let x be a variable. A power series centered at c (c is any real number)
is the series

∞∑
n=0

an(x− c)n.

Take careful note how we start the series at n = 0 here!

There is also the concern for which values of x this series converges. To do this we need the concept of a
radius of convergence:

Definition 0.21 (Radius and Interval of Convergence). The radius of convergence of a power series
∞∑
n=0

an(x− c)n is the number R = 1
p where

p = lim
n→∞

n
√
|an|
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when the limit actually exits. p is allowed to be 0 or ∞, in those cases we say R = ∞ if p = 0 and R = 0
if p = ∞. The interval of convergence is, strictly speaking, the interval of x values for which the series
converges. The interval of convergence necessarily contains (c − R, c + R), and may contain the endpoints:
c−R and c+R. (You have to check these separately to determine whether the interval of convergence contains
them.) If R =∞, the radius of convergence is (−∞,∞), and if R = 0, the interval of convergence is just the
point {c}.

(To be more accurate the limit in the definition should actually be a limit superior, i.e., we should really
have p = lim supn→∞

n
√
|an|, however the concept of limit superior is beyond the scope of this book. The

reason one would need to use this type of limit is because of coefficients like those in part c of Example 0.22
below where every other term is 0 (all the odd powers of x have a coefficient of 0, so in the example the sum
has been rewritten to reflect that), in which case the limit does not exist. A rather difficult, but excellent,
book that explains this concept in more detail is [5], specifically Chapter 3.)

Geometrically speaking, the radius of convergence is the shortest distance to an x value which would make
the power series diverge. In other words, for all x satisfying a− R < x < a + R, the power series converges.
On the topic of the radius of convergence, one can also use the sometimes easier definition

p = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ ,
or even directly compute R as

R = lim
n→∞

∣∣∣∣ anan+1

∣∣∣∣ .
(Again, both of these limits should technically be limit superiors.)

Here are some examples of power series:

Example 0.22.

(a)

∞∑
n=0

(−1)nxn

n

(b)
∞∑
n=0

xn

n!

(c)

∞∑
n=0

(−1)nx2n

(2n)!

Let’s also do a simple example of computing the radius and interval of convergence:

Example 0.23. Find the radius and interval of convergence of:

(a)

∞∑
n=0

xn

n!

(b)
∞∑
n=0

n!(x− 3)n

(c)

∞∑
n=0

(x+ 1)n

5n

(d)

∞∑
n=0

xn

n
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Solution.

(a) Here an =
1

n!
and an+1 =

1

(n+ 1)!
, so

∣∣∣∣ anan+1

∣∣∣∣ =

∣∣∣∣(n+ 1)!

n!

∣∣∣∣ = n+ 1.

Hence the radius of convergence is:

R = lim
n→∞

(n+ 1) =∞,

and the interval of convergence is:

(−∞,∞).

(b) In this case we have an = n! and an+1 = (n+ 1)!, so the radius of convergence is

R = lim
n→∞

∣∣∣∣ n!

(n+ 1)!

∣∣∣∣ = lim
n→∞

1

n+ 1
= 0,

and so the series only converges at x = 3.

(c) This is a case where the original definition of the radius of convergence will be more useful since we have

an =
1

5n
. Let’s first find p:

p = lim
n→∞

n

√∣∣∣∣ 1

5n

∣∣∣∣ = lim
n→∞

1

5
=

1

5
.

Thus the radius of convergence is:

R =
1

p
= 5,

and the interval of convergence is at least (−1 − 5,−1 + 5) = (−6, 4). Now we need to check if it
converges at the endpoints.
At x = 4 we have

∞∑
n=0

(4 + 1)n

5n
=
∞∑
n=0

5n

5n
=
∞∑
n=0

1

which diverges. So 5 is not in the interval of convergence.
At x = −6 we have

∞∑
n=0

(−6 + 1)n

5n
=

∞∑
n=0

(−5)n

5n
=

∞∑
n=0

(−1)n5n

5n
=

∞∑
n=0

(−1)n

which again diverges (since it doesn’t actually exist, that is, it isn’t even ±∞).
Thus the interval of convergence is, in fact, (−6, 4).

(d) Here an =
1

n
, so an+1 =

1

n+ 1
, and hence the radius of convergence is

R = lim
n→∞

∣∣∣∣ n

n+ 1

∣∣∣∣ = 1.

Now the interval of convergence is at least (−1, 1), but we need to check the endpoints.
At x = 1 we have

∞∑
n=0

xn

n
=

∞∑
n=0

1n

n
=

∞∑
n=0

1

n
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which diverges. So 1 is not in the interval of convergence.
At x = −1 we have

∞∑
n=0

xn

n
=

∞∑
n=0

(−1)n

n

which converges by the alternating series test. So the interval of convergence is [−1, 1).

�

Something else of interest will be taking the derivative (and, for sake of completness, integral) of a power
series.

Property 0.24 (Derivatives and Integrals of Power Series). Let f(x) =
∞∑
n=0

an(x−c)n, and suppose the series

has a radius of convergence R. Because f(x) converges on the interval (c−R, c+R), it is differentiable there.
Moreover, the derivative and integral of f(x) have the same radius of convergence as f(x), but not necessarily
the same interval of convergence (meaning you have to recheck the endpoints).

(1) f ′(x) =

∞∑
n=1

nan(x− c)n−1

(2)

∫
f(x) dx = C +

∞∑
n=0

an
(x− c)n+1

n+ 1

0.4.5 Geometric Series

Now we will briefly cover geometric series. These will help in finding series representations of certain functions,
and give us a formula should we run into a series of that form. Now, let’s define the geometric series:

Definition 0.25 (Geometric Series). A geometric series is a series of the form

∞∑
n=0

arn,

for some a, r ∈ R.

The geometric series converges if |r| < 1, and diverges otherwise. If |r| < 1, then the series sums to

∞∑
n=0

arn =
a

1− r
.

For example, the sum of the series
∞∑
n=0

9

(
1

2

)n
=

9

1− 1
2

= 18. Now, as for the comment on using this to

find series representations for functions, consider the function f(x) =
x2

1− x
. We can see this as the sum of a

geometric series with a = x2 and r = x, and so, writing this as a series we have f(x) =
∞∑
n=0

x2xn =
∞∑
n=0

xn+2.

However, remember that a geometric series only converges if |r| < 1, so that series only represents f when
|x| < 1.
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0.4.6 Miscellany

The purpose of this subsection is just to list a few different tests for the covergence of a series.

Property 0.26 (Divergence Test). Consider the series
∞∑
n=1

an. If lim
n→∞

an 6= 0, then
∞∑
n=1

an diverges.

BIG WARNING!!! This test CANNOT be use to show a series converges.

(
Consider the series

∞∑
n=1

1

n

)

Property 0.27 (Telescoping Series Test). Consider the series
∞∑
n=1

(bn − bn+1). If lim
n→∞

bn = L (L 6= ±∞),

then
∞∑
n=1

(bn − bn+1) converges, and moreover,
∞∑
n=1

(bn − bn+1) = b1 − L.

Property 0.28 (p-Series Test). A series of the form
∞∑
n=1

1

np
converges if p > 1 and diverges if p ≤ 1.

Property 0.29 (Alternating Series Test). Given a series of the form
∞∑
n=1

(−1)nan, if 0 < an+1 ≤ an, and

lim
n→∞

an = 0, then the series converges.

Property 0.30 (Integral Test). Suppose we have a series of the form
∞∑
n=1

an, with an ≥ 0. Let f(x) be

a continuous function such that f(x) ≥ 0 (f is positive) for all x ≥ 1, f(x) ≥ f(y) for 1 ≤ x ≤ y (f is

decreasing), and f(n) = an for every integer n ≥ 1. Then the series
∞∑
n=1

an converges if and only if the

integral

∫ ∞
1

f(x) dx converges.

Property 0.31 (Root Test). Given a series
∞∑
n=1

an, let p = lim
n→∞

n
√
|an|. Then:

• if p < 1,
∞∑
n=1

an converges,

• if p > 1,
∞∑
n=1

an diverges,

• if p = 1, the test is inconclusive.
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Property 0.32 (Ratio Test). Given a series

∞∑
n=1

an, let p = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣. Then:

• if p < 1,

∞∑
n=1

an converges,

• if p > 1,

∞∑
n=1

an diverges,

• if p = 1, the test is inconclusive.

Property 0.33 (Comparison Test). Given two series

∞∑
n=1

an and
∞∑
n=1

bn, with an ≥ bn > 0:

• if
∞∑
n=1

an converges, then so does
∞∑
n=1

bn

• if
∞∑
n=1

bn diverges, then so does
∞∑
n=1

an

Property 0.34 (Limit Comparison Test). Given two series
∞∑
n=1

an and
∞∑
n=1

bn, with an, bn > 0, suppose that

lim
n→∞

an
bn

= L > 0 (L 6=∞):

• if

∞∑
n=1

bn converges, then so does

∞∑
n=1

an

• if
∞∑
n=1

bn diverges, then so does
∞∑
n=1

an

Exercises

Determine whether the following series converge or diverge:

1.
∞∑
n=1

(
7

5

)n

2.
∞∑
n=4

(−1)n

6

3.
∞∑
n=0

(
−1

2

)n

4.

∞∑
n=0

5
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5.

∞∑
n=0

(
1

π

)3n+2

6.

∞∑
n=17

n!

2n

7.

∞∑
n=1

(−1)n+1(n+ 2)

n(n+ 1)

8.

∞∑
n=0

(
n

2n+ 1

)n

9.

∞∑
n=0

3n

(n+ 1)n

10.

∞∑
n=1

(n!)n

(nn)2

11.

∞∑
n=1

arctann

n2 + 1

12.

∞∑
n=1

1

nπ

13.

∞∑
n=1

nke−n for k a positive integer

14.

∞∑
n=1

1
5
√
n

15.

∞∑
n=1

n

n2 + 5

16.

∞∑
n=1

1

n2 + 1

17.

∞∑
n=1

lnn

n+ 1

18.

∞∑
n=0

(−1)nn2

n2 + 1
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19.

∞∑
n=1

2n2 − 1

3n5 + 2n+ 1

20.

∞∑
n=1

sin
(2n− 1)π

2

Find the radius and interval of convergence of the following series:

21.
∞∑
n=0

(x
2

)n

22.

∞∑
n=0

(−1)n+1(x− 1)n+1

n+ 1

23.

∞∑
n=1

(x− 3)n−1

3n−1

24.
∞∑
n=1

(2n)!
(x

2

)n

25.
∞∑
n=0

xn

n!

26.

∞∑
n=0

(−1)n(x− 2)n+2

(n+ 1)2

Find f ′(x),

∫
f(x) dx, and their intervals of convergence for the given f(x):

27. f(x) =

∞∑
n=0

xn

n!

28. f(x) =
∞∑
n=1

(−1)n+1(x− 1)n+1

n+ 1

Further Study:

29. Let f(x) =

∞∑
n=0

xn

n!
.

(a) Find the interval of convergence of f .

(b) Show that f ′(x) = f(x).

(c) Show that f(0) = 1.

(d) What well known function is f(x)?



0.4. SERIES 23

30. Let f(x) =

∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
and g(x) =

∞∑
n=0

(−1)nx2n

(2n)!

(a) Find the intervals of convergence of f and g.

(b) Show that f ′(x) = g(x).

(c) Show that g′(x) = −f(x).

(d) What well known functions are f(x) and g(x)?

31. In this exercise, we will study what are known as Bessel Functions. The Bessel function of order 0 is

J0(x) =
∞∑
k=0

(−1)kx2k

22k(k!)2

and the Bessel function of order 1 is

J1(x) = x
∞∑
k=0

(−1)kx2k

22k+1k!(k + 1)!
.

(a) Show that J0(x) and J1(x) converge for all x.

(b) Show that J0(x) satisfies x2J ′′0 + xJ ′0 + x2J0 = 0.

(c) Show that J1(x) satisfies x2J ′′1 + xJ ′1 + (x2 − 1)J0 = 0.

(d) Show that J ′0(x) = −J1(x).
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0.5 Complex Numbers and Related Topics

0.5.1 Complex Numbers

Recall the comment at the beginning of Section 0.1 about the Fundamental Theorem of Algebra allowing
us to factor a polynomial into a product of linear terms and irreducible quadratics. This is true if you want to
keep real numbers as your coefficients for the polynomial. However, if you let the coefficients be not just real,
but complex, then you can factor it as a product of ALL linear terms! The thing that stops us from doing
this, in general, with real coefficients is taking the square root of a negative number. Before we formalize this
statement, let us define a few things, but quickly note that we can do the following:

√
−a =

√
a
√
−1

assuming we are allowed to use the rule
√
ab =

√
a
√
b when b = −1. For convenience, let

√
−1 = i.

Definition 0.35 (Complex Numbers). Let a and b be real numbers. We define the set of complex numbers,
denoted C, as the collection of all “numbers” of the form

a+ ib.

(Note that real numbers are also complex numbers. A complex number is real when b = 0.)

What is the motivation for doing this? Consider the polynomial

x2 − 2ax+ (a2 + b2)

(yes, this may seem like a weird polynomial to look at, but trust me!). Let’s try to find the roots of it. By
the quadratic formula:

x =
−(−2a)±

√
(2a)2 − 4(1)(a2 + b2)

2(1)
=

2a±
√

4a2 − 4a2 − 4b2

2
=

2a±
√
−4b2

2

So what do we do about the negative number −4b2 underneath the square root? Well, using our convention
above, we can write:

x =
2a±

√
−4b2

2
=

2a± i2b
2

= a± ib

so that the roots are a+ ib and a− ib. This means that we can factor our weird polynomial above as

(x− (a+ ib))(x− (a− ib))

which is a product of linear terms! Now, notice how the two roots look similar, but have opposite signs on the
part which is multiplied by i (called the imaginary part) ... These are called a conjugate pair. In fact,
for a complex number z = a+ ib, its conjugate , denoted z̄, is z̄ = a− ib. The fact that both a+ ib and its
conjugate appeared as roots of our polynomial is no coincidence, in fact:

Theorem 0.36 (Conjugate Pairs Theorem). Let p(x) = anx
n + an−1x

n−1 + · · · + a2x
2 + a1x + a0 be a

polynomial with real coefficients (i.e., all the ai are real numbers). Then if x = a+ ib is a root of p(x), then
so is its conjugate a− ib.

As a decently challenging exercise you can try to prove this theorem, but don’t sweat over it. More
importantly, we can finally state the Fundamental Theorem of Algebra in its true glory!

Theorem 0.37 (Fundamental Theorem of Algebra). Let p(x) = anx
n + an−1x

n−1 + · · ·+ a2x
2 + a1x+ a0 be

a polynomial with complex coefficients and an 6= 0. Then p(x) has n, not necessarily distinct, complex roots
r1, r2, ..., rn (not necessarily distinct means that some of the r′is might be the same). Equivalently, we can
factor p(x) as

p(x) = an(x− r1)(x− r2) · · · (x− rn)

for some complex numbers r1, r2, ..., rn.

Don’t worry about trying to prove this since the proof is far beyond the scope of this book, but if you are
ambitious enough, you can find a proof of this in [2].
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0.5.2 Euler’s Formula

There is a beautiful formula relating e, i, sin, and cos. This formula is known as Euler’s Formula. Euler’s
formlua interprets the symbol eiθ.

Theorem 0.38 (Euler’s Formula).

eiθ = cos θ + i sin θ

where θ is given in radians.

Complex analysis interprets eiθ as more than just a symbol, so we will do the same without justification.

Example 0.39. Rewrite the following in the form a+ ib where a, b ∈ R:

(a) e2πi

(b) e
π
2
i

(c) e3i

(d) eri

Solution.

(a) e2πi = cos 2π + i sin 2π = 1 + 0i = 1

(b) e
π
2
i = cos

π

2
+ i sin

π

2
= 0 + i = i

(c) e3i = cos 3 + i sin 3

(d) eri = cos r + i sin r

�

A slight expansion on Euler’s formula yields a new formula that will be of great use to us in a later chapter.
The modification we will use is replacing iθ with a+ ib. Then using the usual laws of exponentiation we arrive
at a new form of Euler’s formula:

ea+ib = eaeib = ea(cos b+ i sin b).

Now suppose we wanted to make this a function. This function is f(x) = e(a+ib)x. This is still well defined
(assuming we are working in the complex numbers) and in fact we can still use Euler’s formula to get:

f(x) = eax(cos bx+ i sin bx).

This is ultimately the form of Euler’s equation we will be using is later chapters. There are also some other
things to note regarding Euler’s formula:

1

2

(
e(a+ib)x + e(a−ib)x

)
=

1

2
eax(cos bx+ i sin bx) +

1

2
eax(cos bx− i sin bx) =

1

2
eax(2 cos bx) = eax cos bx,

and

1

2i

(
e(a+ib)x − e(a−ib)x

)
=

1

2i
eax(cos bx+ i sin bx)− 1

2i
eax(cos bx− i sin bx) =

1

2i
eax(2i sin bx) = eax sin bx.
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Exercises

Find the conjugates of the following complex numbers:

1. 4− 2i

2. π − ie

3. 7

4. e
π
3
i (try rewriting this back in exponential form after taking the conjugate!)

Factor the folloing polynomials as a product of linear terms:

5. 4x2 + 1

6. x3 − x2 + 4x− 4

7. x4 − 1

8. 36x3 − (108− 9i)x2 − 27ix

9. x16 − 1 (the solutions to this are called the 16th roots of unity. To actually pull this one off, you will
have to look up something called “de Moivre’s formula”. You should do it, it will stimulate your mind!)
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0.6 Multi-Variable Functions

0.6.1 Partial Derivatives

Suppose you had a function f(x, y) = x3y and you wanted to find
df

dx
. You would be pretty hard pressed

to do this unless you knew how y depended on x. But what if y has no dependence on x, i.e. f is a function
of two independent variables. Now what?

The answer to this question is that we need to rethink our definition of a derivative. We will now formulate
a new definition of the derivative, called the Partial Derivative:

Definition 0.40 (Partial Derivatives). Suppose that f is a function of two variables, say x and y. Then we
define the Partial Derivatives of f by:

∂f

∂x
= lim

h→0

f(x+ h, y)− f(x, y)

h
,

and
∂f

∂y
= lim

h→0

f(x, y + h)− f(x, y)

h
.

∂f

∂x
is called the partial derivative of f with respect to x and

∂f

∂y
is called the partial derivative of f with

respect to y.

There are many notations used for partial derivatives, for example:

fx(x, y) = fx =
∂f

∂x
=

∂

∂x
f(x, y).

If you think about it for a minute, you will see that if f is only a function of one variable, then the
definition of partial derivatives above coincides with that of a normal derivative. Another point to note is
that we can take partial derivatives of a function of as many independent variables as we want! The definition
of a partial derivative may seem a bit scary at first, but here is some good news:
To take a partial derivative with respect to one variable, you just treat all the other variables as constants
and differentiate as if it were a function of one variable! Here is a few examples of this:

Example 0.41. Find
∂f

∂x
and

∂f

∂y
for the following functions:

(a) f(x, y) = x4y3 + 8x2y

(b) f(x, y) = sec(xy)

Solution.

(a)
∂f

∂x
= 4x3y3 + 16xy and

∂f

∂y
= 3x4y2 + 8x2.

(b)
∂f

∂x
= y sec(xy) tan(xy) and

∂f

∂y
= x sec(xy) tan(xy).

�

The fun doesn’t end here! We can take higher partial derivatives and even mixed partial derivatives! For

example, for a function f of two variables, say x and y, the notation for the second derivatives are:
∂2f

∂x2
,
∂2f

∂y2
,

∂2f

∂x∂y
=

∂

∂x

(
∂f

∂y

)
, and

∂2f

∂y∂x
. The other notations are similar, for example in the subscript notation the

corresponding notations are (in the same order): fxx, fyy, fyx, and fxy (in the latter notation, the subscripts
appear in the order the derivatives are taken). In fact, this brings up a very important theorem involving
mixed partial derivatives that will be useful to us in the next chapter.



28 CHAPTER 0. PREREQUISITES

Theorem 0.42 (Clairaut’s Theorem). Suppose that f is a function such that
∂2f

∂x∂y
and

∂2f

∂y∂x
exist and are

continuous, then
∂2f

∂x∂y
=

∂2f

∂y∂x
.

Example 0.43. Verify Clairaut’s Theorem for the following function:

f(x, y) = xyexy.

Solution. All we need to do is calculate the mixed partial derivatives and verify that they are equal:

fx = yexy + xy2exy

fxy = exy + 3xyexy + x2y2exy

fy = xexy + x2yexy

fyx = exy + 3xyexy + x2y2exy

Since fxy = fyx we have verified the theorem.

�

0.6.2 Integration of Multivariable Functions

Let’s return to the function f(x, y) = x3y. Now suppose instead of differentiating it, we want to integrate
it. Does the operation ∫

x3y dx

even make sense? Again the answer is yes, but we have to slighty modify our definition of integration.

Definition 0.44. Suppose that f is a function of two variables, say x and y, and let Fx be a function such

that
∂Fx
∂x

= f and Fy be a function such that
∂Fy
∂y

= f , then∫
f(x, y) dx = Fx(x, y) + g(y)

and ∫
f(x, y) dy = Fy(x, y) + h(x)

where g is an arbitrary differentiable function of y and h is an arbitrary differentiable function of x.

The functions g and h above take the place of the integration constant since we would like the most general
anti-derivative of the function such that when we take the corresponding derivative we get back to the original
funcion, i.e.

∂

∂x
[Fx(x, y) + g(y)] =

∂

∂x
Fx(x, y) +

∂

∂x
g(y) = f(x, y) + 0 = f(x, y).

Example 0.45. Find

∫
f(x, y) dx and

∫
f(x, y) dy if

f(x, y) =
1

x+ y
.

Solution. ∫
1

x+ y
dx = ln |x+ y|+ g(y)∫

1

x+ y
dx = ln |x+ y|+ h(x)

�
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Exercises

Find the first partial derivatives of the following functions:

1. z = exy

2. f(x, y, z) =
1

x2 + y2 + z2

3. k(x, y) =
1

x
+

1

y

Verify Clairaut’s theorem for the following functions:

4. f(x, y) = xe2y

5. f(p, q) = sin(p+ cos q)

Integrate the following functions with respect to all of its variables:

6. f(x, y) = x2 + y2

7. g(x, y, z) = xz2exy

8. k(r, θ) = r cos θ
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0.7 Miscellaneous Things

0.7.1 Slope Fields

Recall that the derivative gives the slope of a function at whichever point you evaluate the derivative at.
Now suppose that you were just given the equation of the derivative of some function y, i.e. something like

y′ = f(x, y).

What does it mean? It tells you the slope of the function z(x), such that z′(x) = f(x, z(x)), at the point
(x, z(x)) in the xy-plane. So how do we use this information? All it seems that we know is that it tells us
the slope of some function like z above. The problem is that we don’t know, given any point (x, y) in the
xy-plane such that f(x, y) is defined, if z(x) = y. However, what we can do is assume that there is some
function z with z(x) = y. Thus we can just plug in any point (x, y) into f(x, y). What this will do is if there
is a function z such that z(x) = y and z′(x) = f(x, z(x)), you will get a number that is the slope of z at the
point (x, y). Obviously it is not feasable to do this for every single point in the xy-plane. Instead we will only
plug in a few values, enough to fill in a decent sized grid so that we can get some information about z. We
will need some way to represent the number that we get from pulgging in the point on the grid. The way we
will do this is by, at each point (x, y) of the grid, draw a small line segment with slope f(x, y) passing though
the point. The grid, together with these little lines is called a slope field. Let’s illustrate this through an
example:

Example 0.46. Draw a slope field for the equation:

y′ = 2x

in the square [−2, 2]× [−2, 2] = {(x, y) ∈ R2 | − 2 ≤ x ≤ 2 and − 2 ≤ y ≤ 2}.

Solution. Let’s do this by just finding the slopes at the points with integer coordinates:

f(−2, 2) = −4 f(−1, 2) = −2 f(0, 2) = 0 f(1, 2) = 2 f(2, 2) = 4
f(−2, 1) = −4 f(−1, 1) = −2 f(0, 1) = 0 f(1, 1) = 2 f(2, 1) = 4
f(−2, 0) = −4 f(−1, 0) = −2 f(0, 0) = 0 f(1, 0) = 2 f(2, 0) = 4
f(−2,−1) = −4 f(−1,−1) = −2 f(0,−1) = 0 f(1,−1) = 2 f(2,−1) = 4
f(−2,−2) = −4 f(−1,−2) = −2 f(0,−2) = 0 f(1,−2) = 2 f(2,−2) = 4

Now, as described above, we draw a short line segment passing through each of these points of the indicated
slope and get:

Figure 0.1:

�
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At first sight it might not look like these slope fields are too useful (or perhaps you can already see the
curves this slope field traces out), however, observe the following picture which is a slope field for the same
equation as above, but with many more sample points:

Figure 0.2:

Do you see anything now? It should look like you can trace these line and get parabolas, and in fact you
can! Here is an example of a curve drawn in:

Figure 0.3:

The parabolas that you traced out are called integral curves of the equation y′ = 2x. But why do we
get parabolas? Maybe you see why, or maybe not... Either way we will discuss why in the next chapter. One
more thing we need to mention here is what to do if f(x, y) is undefined? If f(x, y) is of the form c

0 , then for
the slope, just make it vertical (in fact this pretty much corresponds to having ”infinite” slope at that point).
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Exercises

Draw a slope field for the following equations and, if you can, trace out a few integral curves. What function
do the integral curves look like (if it is possible to identify them)? If you have access to a software that will
plot slope fields, try plotting one with several sample points so you can really see the integral curves.

1. y′ =
1

x

2. y′ =
x

y

3. y′ = 3x2

4. y′ = cosx

Below each equation is its slope field. Trace out some integral curves in each:

5. y′ = x2(1 + y2)

Figure 0.4:
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6. y′ = sin(xy)

Figure 0.5:

7. y′ =
1

1 + x2

Figure 0.6:
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Chapter 1

First-Order Differential Equations

1.1 Introduction to Differential Equations

Differential equations are an extremely useful tool. They can be used to describe anything from a rocketship
launching into outer space to the spread of a rumor, from electrical circuts to interest on a loan. With all
these applications, one might ask, ”What exactly is a differential equation?” Here you go:

Definition 1.1 (Differential Equation). A differential equation is an equation containing one or more
derivatives of a single unknown function.

For a function of one variable, in symbols, a differential equation has the form:

p
(
x, y, y′, y′′, ..., y(n)

)
= f(x)

where p is any function of the indicated inputs, y, the solution of the differential equation, is a function of x,
and f is any function of x. Differential equations involving derivatives of a function of one variable are called
Ordinary Differential Equations , often abbreviated to ODE. Some examples of an ODE are:

x2y′′ + xy′ + (x2 − ν2)y = 0, ν ∈ [0,∞) (1.1)

y′ + y = x2 (1.2)

y(4) + 3xy′′′ + 16 cos(x)y′′ + exy′ + 3y = 4 (1.3)

Equation (1.1) is known as the Bessel Equation of order ν.

Notice that there is no restriction on the number of independent variables that the unknown function may
have. For example the equation:

∂u

∂x
+
∂2u

∂y2
= 0

where u is a function of x and y is a perfectly valid differenital equation. This type of differential equation is
known as a Partial Differential Equation , often abbreviated to PDE. Some popular PDEs are:

∂2u

∂x2
+
∂2u

∂y2
= 0 (1.4)

α2∂
2u

∂x2
=
∂u

∂t
(1.5)

a2
∂2u

∂x2
=
∂2u

∂t2
. (1.6)

Equation (1.4) is known as the Laplace equation, equation (1.5) is known as the heat equation, and equation
(1.6) is known as the wave equation. While PDEs are interesting in their own right, and have copious amounts

35
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of applications, in these notes, we will be focusing on ODEs as they are MUCH easier to solve and deal with.
From here on out, an ODE will simply be referred to as a differential equation.

In short, a differential equation is an equation with derivatives in it. In the definition of a differential
equation there was this mysterious function which the equation contained derivatives of. This function is
called the solution of the differential equation. Let’s see some examples of solutions to differential equations:

First a simple example:

Example 1.2. Show that y = e4t is a solution to the differential equation

y′ − 4y = 0.

Solution. The way to check that it is a solution is simply to just plug it into the differential equation and
verify that both sides of the equation are, in fact, equal. Let’s do this:
First we need to find y′:

y′ = 4e4t.

Now just plug y and y′ into the equation:

y′ − 4y = 4e4t − 4(e4t) = 0.

Indeed we have that both sides of the equation are equal when we plug in y = e4t, and thus we have verified
that y = e4t is a solution to the differential equation y′ − 4y = 0.

�

Now a more complicated example:

Example 1.3. Show that y = c1e
2x sinx+ c2e

2x cosx is a solution to the differential equation

y′′ − 4y′ + 5y = 0,

where c1 and c2 are any two real numbers.

Solution. While the equation and the solution may look more complicated, the method remains exactly the
same. First we need to find y′ and y′′:

y′ = c1(2e
2x sinx+ e2x cosx) + c2(2e

2x cosx− e2x sinx)

= 2c1e
2x sinx+ c1e

2x cosx+ 2c2e
2x cosx− c2e2x sinx)

= (2c1 − c2)e2x sinx+ (c1 + 2c2)e
2x cosx

and

y′′ = (2c1 − c2)(2e2x sinx+ e2x cosx) + (c1 + 2c2)(2e
2x cosx− e2x sinx)

= (4c1 − 2c2)e
2x sinx+ (2c1 − c2)e2x cosx+ (2c1 + 4c2)e

2x cosx− (c1 + 2c2)e
2x sinx

= (3c1 − 4c2)e
2x sinx+ (4c1 + 3c2)e

2x cosx
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Now that we have both derivatives let’s plug them into the differential equation and see if it works out:

y′′ − 4y′ + 5y = (3c1 − 4c2)e
2x sinx+ (4c1 + 3c2)e

2x cosx− 4((2c1 − c2)e2x sinx+ (c1 + 2c2)e
2x cosx)

+5(c1e
2x sinx+ c2e

2x cosx)

= (3c1 − 4c2)e
2x sinx+ (4c1 + 3c2)e

2x cosx− (8c1 − 4c2)e
2x sinx

−(4c1 + 8c2)e
2x cosx+ 5c1e

2x sinx+ 5c2e
2x cosx

= (3c1 − 4c2)e
2x sinx− (8c1 − 4c2)e

2x sinx+ 5c1e
2x sinx+ (4c1 + 3c2)e

2x cosx

−(4c1 + 8c2)e
2x cosx+ 5c2e

2x cosx

= (3c1 − 4c2 − 8c1 + 4c2 + 5c1)e
2x sinx+ (4c1 + 3c2 − 4c1 − 8c2 + 5c2)e

2x cosx

= 0e2x sinx+ 0e2x cosx = 0

Thus we have verified that y = c1e
2x sinx+ c2e

2x cosx is a solution of y′′ − 4y′ + 5y = 0, as desired.

�

Definition 1.4 (Trivial/Nontrivial Solution). The trivial solution to a differential equation

p
(
x, y, y′, y′′, ..., y(n)

)
= f(x)

is the solution y ≡ 0 (i.e. y(x) = 0 for all x), provided it is a solution. Any other type of solution is called
nontrivial.

Note that it is possible that a differential equation does not possess a trivial solution. For example, the
differential equation y′ = x does not have a trivial solution.

Definition 1.5 (General Solution). The general solution to the differential equation

p
(
x, y, y′, y′′, ..., y(n)

)
= f(x)

is a solution of the form
y = y(x, c1, ..., cn)

where c1, ..., cn are taken to be arbitrary constants.

For first order differential equations, which is the focus of this chapter, the general solution has the form
y = y(x, c).

This last example demonstrates that a differential equation can have a multitude of solutions, in fact
infinitely many! What can we do to only get a single solution? Are there ways to put restrictions on the
equation in order to get only one solution? The answer is in the affirmative and the way to do this is to impose
something called an initial value. Before introducing the concept of an initial value, we must introduce the
concept of order of a differential equation.

Definition 1.6 (Order of a Differential Equation). The order of a differential equation is the order of the
highest derivative involved in the differential equation.

Example 1.7. Find the order of the differential equation

y(7) + 25y(8) − 34x6y′′′ + yy′ = sinx2.

Solution. Since the highest derivative in this equation is y(8), the order of the differential equation is 8.
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�
Now we will introduce the concept of an initial value:

Definition 1.8 (Initial Value). An initial value for a differential equation of order n, where n is a natural
number (i.e. a positive integer), is a specified value for y(k)(p) where 0 ≤ k < n and p is any point in the
domain of the solution.

An example of an initial value for the equation y′ − 4y = 0 is y(0) = 5. We saw in Example 1.2 that
y = e4t is a solution of y′ − 4y = 0. In fact any function of the form y = ce4t, where c is a real number, is a
solution to the equation. To use the initial value we require that if we plug 0 into the function, the output
must be 5. So for this equation, take the general form of the solution for y and plug in 0:

y(0) = ce4(0) = ce0 = c

thus we see that y(0) = 5 is satisfied when c = 5, thus we have cut down the number of solutions from
infinitely many to one, namely y = 5e4t.

In order to garantee that we have cut down the possible solutions for a differential equation from infinitely
many to only one, the number of initial values must be one less than the order of the differential equation.
Moreover, they must also all be at the same point. More concisely, for a differential equation of order n, the
initial values must be of the form:

y(n−1)(p) = an−1, y
(n−2)(p) = an−2, ..., y

′(p) = a1, y(p) = a0

where a0, ..., an−1 are real numbers.

We have already seen one example of an initial value problem, now let’s establish a definition:

Definition 1.9 (Initial Value Problem). An initial value problem (often abbreviated IVP) of order n is
a differential equation of order n together with n initial values of the form y(n−1)(p) = an−1, y

(n−2)(p) =
an−2, ..., y

′(p) = a1, y(p) = a0. Written more compactly:

g(x, y, y′, ..., y(n)) = f(x), y(n−1)(p) = an−1, y
(n−2)(p) = an−2, ..., y

′(p) = a1, y(p) = a0.

Let’s see another example of a solution to an IVP:

Example 1.10. Verify that y = −3ex + 2e3x is a solution to the IVP

y′′ − 4y′ + 3y = 0, y(0) = −1, y′(0) = 3.

Solution. This is similar to verifying that it is a solution to the differential equation, just with the additional
requirement that we check that it also satisfies the initial value. First, let’s verify that it satisfies the differential
equation. So let’s find y′ and y′′:

y′ = −3ex + 6e3x

and
y′′ = −3ex + 18e3x

and plug them in:

y′′ − 4y′ + 3y = −3ex + 18e3x − 4(−3ex + 6e3x) + 3(−3ex + 2e3x) = (−3 + 12− 9)ex + (18− 24 + 6)e3x = 0.

So it satisfies the differential equation, now does it satisfy the initial values?

y(0) = −3e0 + 2e3(0) = −3 + 2 = −1

and
y′(0) = −3e0 + 6e3(0) = −3 + 6 = 3.

So it also satisfies the initial values, thus y = −3ex + 2e3x is the solution to the IVP.
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�

The concept of a slope field is very much related to first order differential equations. Recall that we graph
the slope field using the equation for the derivative, which is coincidently (or is it?) a first order differential
equation. Remember how, in a slope field, we can trace out curves? These are actually solutions to the differ-
ential equation! Often times it is hard to actually find solutions to differential equations, so if finding a closed
form solution is impractical, an alternative is to graph the solution curves and try our best to approximate
them. There are various ways to do this approximation, some of these methods make up the body of Chapter
8. There are more powerful ways outside of that chapter, and that is a main topic in the field of mathematics
called Numerical Analysis. Now back to the topic of slope fields. The fact that you can trace out infinitely
many of these curves reinforces that a differential equation can have infinitely many solutions. If you consider
the most general solution to a differential equation (the one with an arbitrary constant in it), it generates
what is called a family of solutions to the differential equation. If we specify an initial condition y(x0) = y0,
then we get a specific member of this family of solutions, often called the solution curve or the integral
curve passing through (x0, y0). Let’s see an example of this in action:

Consider the differential equation y′ = −2x. We can easily show that y = −x2 + c is the general solution
by integrating both sides of the equation. Now, let’s plot a slope field for this differential equation:

Figure 1.1: A slope field for y′ = −2x on the rectangle [−2, 2]× [−2, 2].

Now, observe a plot containing the graphs of the family y = −x2 + c for the c values:

−2, −1.5, −1, −0.5, 0, 0.5, 1, 1.5, 2.
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Figure 1.2:

And now, if we put the two together:

Figure 1.3:

See how the curves ”follow” the lines in the slope field, and where the curves actually touch the lines of
the slope field, the lines are tangent to the curves? That is the purpose of a slope field! The values of c
correspond to the following initial values (in order):

(0,−2), (0,−1.5), (0,−1), (0,−0.5), (0, 0), (0, 0.5), (0, 1), (0, 1.5), (0, 2)

However, it should be pointed out here that the x-value of an initial value does not always have to be zero,
and we can have multiple initial values corresponding to the same c value. For example, the initial values:

(−3,−9), (−1,−1), (2,−4), (π,−π2)

all correspond to c = 0 (check for yourself).
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Exercises

Verify that the given function is a solution of the differential equation.

1. y =
1

3
x2 + c

1

x
; xy′ + y = x2

2. y = ce−x
2

+
1

2
; y′ + 2xy = x

3. y = x−
1
2 (c1 sinx+ c2 sinx) + 4x+ 8; x2y′′ + xy′ +

(
x2 − 1

4

)
y = 4x3 + 8x2 + 3x− 2

4. y = tan

(
1

3
x3 + c

)
; y′ = x2(1 + y2)

5. y = c1 cos 2x+ c2 sin 2x; y′′ + 4y = 0

6. y =
√
x; 2x2y′′ + 3xy′ − y = 0

Find the order of the given differential equation.

7. y′′ + 2y′y′′′ + x = 0

8. y′ − y7 = 0

9.
d2y

dx2
y −

(
dy

dx

)2

= 2

Determine whether the given function is a solution of the initial value problem.

10. y = x cosx; y′ = cosx− y tanx, y
(π

4

)
=

π

4
√

2

11. y =
2

x− 2
; y′ =

−y(y + 1)

x
, y(1) = 2

12. y = 4ex + e2x; y′′ − 3y′ + 2y = 0, y(0) = 4, y′(0) = 6

13. y = 1
3x

2 + x− 1; y′′ =
x2 − xy′ + y + 1

x2
, y(1) =

1

3
, y′(1) =

5

3

Using the slope fields you obtained in Section 0.7, plot several integral curves for for the differential
equation. Give an initial value for each curve you plot. Integrate the differential equation to get the general
solution to the equation (except in problem 15).

14. Section 0.7, Problem 1

15. Section 0.7, Problem 2. The general solution to this problem is given implicitly by y2 = x2 + c.

16. Section 0.7, Problem 3
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17. Section 0.7, Problem 4

Challenge Problem

18. Suppose that a function f is a solution of the initial value problem

y′ = x2 + y2, y(1) = 2.

Find f ′(1), f ′′(1), and f ′′′(1).
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1.2 Seperable Differential Equations

Suppose we had the differential equation:

dy

dx
= f(x, y)

and that it can be written in the form:

p(y)
dy

dx
= q(x) (1.7)

where p and q are some functions of y and x respectively. Suppose that y = g(x) is a solution to this differential
equation, then we have that:

p[g(x)]g′(x) = q(x).

Now let’s integrate both sides with respect to x:∫
p[g(x)]g′(x) dx =

∫
q(x) dx

using u-substitution on the left integral with u = g(x) so that du = g′(x)dx we get:∫
p(u) du =

∫
q(x) dx,

which, if we let P and Q be differentiable functions such that P ′(y) = p(y) and Q′(x) = q(x) yields, after
replacing the u-substitution:

P [g(x)] = Q(x) + C,

where C is an arbitrary constant. Replacing g with y we have the equation:

P (y) = Q(x) + C. (1.8)

This says that y is a solution of (1.7) if it satisfies (1.8). Conversely, suppose that y is a function satisfying
(1.8). Then taking the derivative of both sides we have:

P ′(y)
dy

dx
= Q′(x),

or rather

p(y)
dy

dx
= q(x)

which is precisely equation (1.7)! This means that y is a solution to (1.7) if and only if it satisfies equation
(1.8). This motivates the following definition:

Definition 1.11 (Separable Equation). A differential equation

y′ = f(x, y),

is called separable if it can be written in the form

p(y)y′ = q(x),

or equivalently
p(y)dy = q(x)dx.
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Notice that in equation (1.8) it is not always possible to isolate the y variable and get an explicit solution
to (1.7), however (1.8) still represents a solution of (1.7), it is called an implicit solution. Now let’s see
some examples of separable differential equations.

Example 1.12. Solve the differential equation

y′ = −2xy2.

Solution. Let’s start by separating the variables. We can rewrite the equation as

1

y2
dy = −2x dx.

Next we should integrate both sides of the equation:∫
1

y2
dy =

∫
−2x dx

and we get

−1

y
= −x2 + C

and thus

y =
1

x2 + C

is the general solution to our differential equation. However, we are not done yet! Notice that when we
separated the variables, we divided by y2... What if y2 = 0? Then this is a bad move! Thus when we divided
by y2, we implicitly assumed that y 6= 0, thus we must check whether y = 0 is a solution to the equation.
Plugging y = 0 into the equation, we see that y = 0 is in fact a solution. Since there is no C value we can
choose in the general solution that gives y = 0, we must include it separately. Thus our complete solution is:

y =
1

x2 + C
, y ≡ 0

�

Now suppose that, for the example above we include the initial value y(0) = −1. To find a solution we

plug the initial value into the general solution y =
1

x2 + C
to solve for C:

−1 =
1

0 + C

which gives that C = −1. So our solution to the initial value problem is:

y =
1

x2 − 1
.

There is only one problem with this, a solution to a differential equation has to be a differentiable function,
and in order to be differentiable you have to be continuous, and this function is not continuous at x = ±1!!!

To fix this problem, we have to find an interval on which this function is differentiable. y =
1

x2 − 1
is differen-

tiable on the following intervals: (−∞,−1), (−1, 1), and (1,∞). So which one do we choose? By convention
we choose the longest interval that contains as many positive numbers as possible. Thus in this case we will
choose (1,∞). Notice that this is only a convention, so if you chose either of the other two, you would not be
wrong.



1.2. SEPERABLE DIFFERENTIAL EQUATIONS 45

Now suppose instead that we wanted to start with the initial value y(2) = 0. As before, plug this into the
general solution:

0 =
1

9 + C

and solving for C we get... WAIT! We CAN’T solve for C! What do we do now? Well remember that y ≡ 0
is a solution too, and in fact satisfies this initial value. Thus y ≡ 0 is the solution we are looking for.

Another way to handle initial values is the following: Suppose we are given the initial value problem

p(y)dy = q(x)dx, y(x0) = y0.

As usual start by integrating both sides, but this time we are going to incorporate the initial value into the
integral: ∫ y

y0

p(y)dy =

∫ x

x0

q(x)dx, (1.9)

then solve for y if possible, otherwise leave it as an implicit solution. That this gives the solution to the initial
value problem can be checked using the fundamental theorem of calculus.

Example 1.13. Solve the differential equation:

y′ = 4
y

x
.

Solution. First start by separating the variables (again, since we are dividing by y we will have to check the
solution y ≡ 0 separately):

1

y
dy =

4

x
dx.

Integrating both sides yields:
ln |y| = 4 ln |x|+ C = lnx4 + C.

Trying to isolate y we get:
|y| = elnx

4+C = elnx
4
eC = eCx4

and getting rid of the absolute value on y gives:

y = ±eCx4.

Since ±eC can attain any value other than 0, we might as well write our solution as:

y = Cx4, C 6= 0.

Now that we have done this, let’s check whether y ≡ 0 is a solution. Plugging y ≡ 0 into the equation we get:

0 = 4
0

x
= 0,

thus y ≡ 0 is a solution. Notice that in our equation y = Cx4, if we do let C = 0 we just get y = 0, which we
just verified is a solution, thus we can remove the restriction that C 6= 0 and write our general solution as:

y = Cx4.

Just one more thing, notice that in our original equation, if we plug in x = 0 we have problems, thus we have
to eliminate x = 0 from the domain of our solution, but that would make it discontinuous, so we only consider
our solution on the interval (0,∞). So, at last, our final solution looks like: y = Cx4, x > 0.

�
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One more example, just for good measure:

Example 1.14. Solve the initial value problem

y′ =
secx tanx

5y4 + 2e2y
, y(0) = 3

Solution. Since 5y4 + 2e2y 6= 0 for any y, we can safely multiply by it to both sides and get:

(5y4 + 2e2y)y′ = secx tanx.

Integrating both sides we get:

y5 + e2y = secx+ C.

Most likely we won’t be able to solve for y in this case, so it is best to leave it as an implicit solution. Now
let’s handle the initial value. Plug in the point (0, 3) to get:

243 + e6 = 1 + C =⇒ C = e6 + 242,

thus our solution to the IVP is

y5 + e2y = secx+ e6 + 242.

�

Exercises

Find the explicit general solution of the differential equation. If an explicit solution cannot be found, an
implicit solution is acceptable. If there is an initial value, find the solution to the initial value problem.

1. y′ = xyex

2. yy′ = 4x, y(1) = −3

3. y′ =
1 + y2

1 + x2
, y(2) = 3 (there actually is an explicit solution to this one!)

4. y′ = 2y(y − 2)

5. y′ + y = 6

6. y′ = ex(1− y2)
1
2 , y(0) =

1

2

7. y′ = ex+y

8. y′ = 2xy

9. xy′ = (1− 2x2) tan y

10. y′ + 2x(y + 1) = 0, y(0) = 2
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11. y′
√

1− x2 +
√

1− y2 = 0 (this one has an explicit solution too!)

12. x+ yy′ = 1, y(3) = 4

13. 2x+ 2yy′ = 0

Challenge Problems

14. Show that an equation of the form y′ = F (ay + bx+ c), a 6= 0, becomes separable under the change of
dependent variable v = ay + bx+ k, where k is any number.

15. Use Exercise 14 to solve the differential equation

y′ = (y + 4x− 1)2.

16. Solve the initial value problem

y′ = ex(sinx)(y + 1), y(2) = −1.

17. Verify that (1.9) gives the solution to the initial value problem

p(y)dy = q(x)dx, y(x0) = y0.
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1.3 Exact Differential Equations

1.3.1 Exact

In this section, we will consider slightly more general differential equations: Exact Differential Equations.

Definition 1.15 (Exact Differential Equation). A differential equation

M(x, y) dx+N(x, y) dy = 0

is said to be exact if
∂M

∂y
=
∂N

∂x
.

This might seem kind of familiar if you have taken a class in multivariable calculus. Checking whether a
differential equation is exact is the exact same process as checking whether a 2-D vector field is conservative.
A conservative vector field is a vector field which is the gradient of a scalar function, i.e. suppose that V is a
conservative 2-D vector field, then:

V = ∇f =


∂f

∂x

∂f

∂y

 ,

where f = f(x, y) is some function. The way to check whether an arbitrary vector field

V =

(
M(x, y)
N(x, y)

)
is conservative is to check if

∂M

∂y
=
∂N

∂x
.

The reason this is sufficient is because of Clairaut’s theorem which states for a C2 (all second partial derivatives
are continuous) f ,

∂2f

∂x∂y
=

∂2f

∂y∂x
.

Notice that the condition for conservative is the same as that of being an exact differential equation (at least
in appearance). This reason is because they are precisely the same thing. A function f(x, y) is a solution of
the exact differential equation M(x, y) dx+N(x, y) dy = 0 if the differential of f (denoted df) is equal to the
equation in question, i.e.:

df(x, y) :=
∂f

∂x
dx+

∂f

∂y
= 0.

Since any C2 function satisfies Clairaut’s theorem, the condition

∂M

∂y
=
∂N

∂x

is sufficient to determine whether a differential equation is exact, because a more technical definition of an
exact differential equation is df = 0 (where, again, df stands for the differential of f as defined above). You
may also see exact differential equations written in one of the following equivalent forms:

M(x, y) +N(x, y)
dy

dx
= 0,

or
M(x, y) +N(x, y)y′ = 0.
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Example 1.16. Show that

(3x2 − 2y2)dx+ (1− 4xy)dy = 0

is exact.

Solution. In our example M = 3x2 − 2y2 and N = 1− 4xy. Let’s check the exactness equation:

∂M

∂y
= −4y,

∂N

∂x
= −4y,

thus our equation is exact since
∂M

∂y
=
∂N

∂x
.

�

1.3.2 Solving Exact Differential Equations

Recall that a solution to an exact equation is a function, say f , such that df = M dx+N dy =
∂f

∂x
dx+

∂f

∂y
dy.

So let’s start by assuming that the equation M dx+N dy = 0 is exact. Then we have the two equations:

∂f

∂x
= M

and
∂f

∂y
= N.

Take the first equation, and integrate both sides with respect to x. Let m(x, y) be any C2 function such that
∂m

∂x
= M , then: ∫

∂f

∂x
(x, y) dx =

∫
M(x, y) dx

becomes:

f(x, y) = m(x, y) + g(y)

where g is an arbitrary function of y. Now, let’s use our second equation. Take the partial derivative of f
with respect to y and set it equal to N(x, y):

∂f

∂y
(x, y) =

∂m

∂y
(x, y) + g′(y) = N(x, y).

Since our equation is exact we will be able to solve for g′(y). Once we solve for g′(y), integrate it to find g(y).
Then we have found our final solution:

f(x, y) = m(x, y) + g(y),

usually written as:

m(x, y) + g(y) = c.

Notice that I started by integrating M first. It is perfectly correct, and sometimes easier, to integrate N first;
which one you would integrate first just depends on the given equation.

Example 1.17. Solve the exact differential equation

3x2 − 2y2 + (1− 4xy)y′ = 0.
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Solution. We have already shown that this equation is exact in Example 1, now let’s find it’s solution. Start
by integrating M with respect to x and call it f(x, y):

f(x, y) =

∫
M(x, y) dx =

∫
3x2 − 2y2 dx = x3 − 2xy2 + g(y).

Now take the partial derivative of f with respect to y:

∂f

∂y
= −4xy + g′(y).

Set
∂f

∂y
= N and solve for g′(y):

−4xy + g′(y) = 1− 4xy,

which gives that
g′(y) = 1.

Integrating both sides we get

g(y) = y + c (don’t forget the integration constant here!!!),

and so our solution is:
f(x, y) = x3 − 2xy2 + y + c

or simply
x3 − 2xy2 + y = c.

�

Example 1.18. Determine whether the equation

(xy2 + 4x2y) dx+ (3x2y + 4x3) dy = 0

is exact. If it is, find the solution.

Solution. Let’s check the exactness condition:

∂M

∂y
= 2xy + 4x2,

∂N

∂x
= 6xy + 12x2.

Since the two equations are not equal, the equation is not exact.

�

1.3.3 Integrating Factors

In the last example we saw an example of a differential equation that is not exact... but that does not
mean that it cannot be made exact! If we multiply the function µ(x, y) = x−1y through the equation, we get:

(y3 + 4xy2) dx+ (3xy2 + 4x2y) dy = 0,

which if we check the exactness condition for:

∂M

∂y
= 3y2 + 8xy,

∂N

∂x
= 3y2 + 8xy

we see that it is now exact!! The function µ(x, y) is called an integrating factor for the differential equation.
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Definition 1.19 (Integrating Factor). A function µ(x, y) is called an integrating factor for the equation

M(x, y) dx+N(x, y) dy = 0 (1.10)

if the equation

µ(x, y)M(x, y) dx+ µ(x, y)N(x, y) dy = 0 (1.11)

is exact.

Note that Equations (1.10) and (1.11) need not have the same solutions if µ(x, y) is ever undefined or
equal to 0, as muliplication of the equation by such a µ can create singularities or trivialities. Another thing
worth noting is that making an equation exact is not the only purpose of an integrating factor.

Integrating factors, in general, are very difficult to find, and while we have many methods for finding
them, there is no guarantee that any given method will work on an equation you are trying to solve. In this
text we will explore two kinds of integrating factors. First let’s find out what we can by just assuming that
the Equation (1.10) has an integrating factor µ(x, y). If it is assumed that µM dx+ µN dy = 0 is exact, then

∂

∂y
(µM) =

∂

∂x
(µN)

or equivalently
µyM + µMy = µxN + µNx,

and more usefully
µ(My −Nx) = µxN − µyM. (1.12)

Suppose that Equation (1.10) has an integrating factor of the form µ(x, y) = P (x)Q(y). Then µx(x, y) =
P ′(x)Q(y) and µy(x, y) = P (x)Q′(y). Plugging this into Equation (1.12) we get

P (x)Q(y)(My −Nx) = P ′(x)Q(y)N − P (x)Q′(y)M.

Dividing through by P (x)Q(y) we get:

My −Nx =
P ′(x)

P (x)
N − Q′(y)

Q(y)
M (1.13)

Now define the functions

p(x) =
P ′(x)

P (x)
, and q(y) =

Q′(y)

Q(y)
,

and plug them into (1.13) to get:
My −Nx = p(x)N − q(y)M. (1.14)

Thus we have a condition on when µ(x, y) is an integrating factor. However, (1.14) is more useful than you
might think! Let’s suppose that we have two functions p and q satisfying (1.14). Then by comparison with
(1.13), we see that

p(x) =
P ′(x)

P (x)
, and q(y) =

Q′(y)

Q(y)
.

Thus by integrating both sides of the equations we find that:

P (x) = e
∫
p(x) dx, and Q(y) = e

∫
q(y) dy.

While this is a good result, there is no guarantee that we can find such functions p(x) and q(y) satisfying
(1.14). Here are some conditions with which we can find p and q:
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Theorem 1.20. Consider the differential equation

M dx+N dy = 0.

(a) If
My −Nx

N
is independent of y (does not contain the variable y), define

p(x) =
My −Nx

N
.

Then
µ(x) = e

∫ x p(s) ds
is an integrating factor for M dx + N dy = 0. Here

∫ x

p(s) ds denotes the antiderivative of p(x) with

the constant of integration chosen 0.

(b) If
Nx −My

M
is independent of x (does not contain the variable x), define

q(y) =
Nx −My

M
.

Then
µ(y) = e

∫ y q(s) ds
is an integrating factor for M dx+N dy = 0.

There are some differential equations where it will be easier to apply part (a) of the theorem (it can even
be impossible to apply (b) rather than just more difficult), and vice versa; there are cases where it is just as
easy to apply either one; and there are cases where it is impossible to apply either one. Just a reminder, there
is no guarantee that a differential equation has an integrating factor that makes it exact.

Example 1.21. Find an integrating factor for the equation

(2xy3 − 2x3y3 − 4xy2 + 2x)dx+ (3x2y2 + 4y)dy = 0

and find the solution.

Solution. Let’s try to apply Theorem 1. First let’s find My and Nx:

My = 6xy2 − 6x3y2 − 8xy

and
Nx = 6xy2.

Thus the equation is not exact, so it is necessary to find an integrating factor. Well:

My −Nx = −6x3y2 − 8xy

and
N = 3x2y2 + 4y

so
My −Nx

N
=
−6x3y2 − 8xy

3x2y2 + 4y
=
−2x(3x3y2 + 4y)

3x3y2 + 4y
= −2x

which is independent of y, so letting p(x) = −2x and applying Theorem 1.a we get

µ(x) = e
∫
p(x) dx = e

∫
−2x dx = e−x

2
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as our integrating factor. Now multiply through the differential equation by µ to get:

e−x
2
(2xy3 − 2x3y3 − 4xy2 + 2x)dx+ e−x

2
(3x2y2 + 4y)dy = 0.

In this case it will be much easier to compute the integral
∫
µN dy so let’s do that:

f =

∫
µN dy =

∫
e−x

2
(3x2y2 + 4y)dy = e−x

2

∫
(3x2y2 + 4y)dy = e−x

2
(x2y3 + 2y2) + g(x).

Now find
∂f

∂x
and set it equal to µM :

∂f

∂x
= −2xex

2
(x2y3 + 2y2) + e−x

2
(2xy3) + g′(x)

= e−x
2
(−2x3y3 − 4xy2 + 2xy3) + g′(x)

= µM = e−x
2
(2xy3 − 2x3y3 − 4xy2 + 2x)

Solving for g′(x) yields

g′(x) = 2xe−x
2

and thus
g(x) = −e−x2

so that our solution is
e−x

2
(x2y3 + 2y2 − 1) = c.

�

Remark 1.22. It is sometimes convineint for differential equations with M and N both polynomials (in two
variables) to first check for an integrating factor of the form µ(x, y) = xmyn. This can often times be less
work than Theorem 1, but is much less general.

Remark 1.23. Theorem 1 does not always work. If you find that it does not work, an alternative that you
can (and should) try it to try to find functions p(x) and q(y) that satisfy Equation (1.14) and then find
µ(x, y) = P (x)Q(y) using the method outlined following Equation (1.14). An example of this type of problem
is Exercise 7.

Exercises

Check if the equation is exact, if it is, solve it. If there is an initial value, find the particular solution
satsifying the initial value.

1. (3x2y2 − 4xy)y′ = 2y2 − 2xy3

2. (x+ y2)
dy

dx
+ 2x2 − y = 0

3. (4x3y2 − 6x2y − 2x− 3)dx+ (2x4y − 2x3)dy = 0, y(1) = 3

4. (x2 − y)dy + (2x3 + 2xy)dx = 0

5. (y−3 − y−2 sinx)y′ + y−1 cosx = 0

6. (2x− 1)(y − 1)dx+ (x+ 2)(x− 3)dy = 0, y(1) = −1
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Solve the differential equation if possible, using an integrating factor if necessary.

7. (3xy + 6y2)dx+ (2x2 + 9xy)dy = 0

8. y dx− x dy = 0

9. (2xy + y2)dx+ (2xy + x2 − 2x2y2 − 2xy3)dy = 0

10. cosx cos y dx+ (sinx cos y − sinx sin y + y)dy = 0

11. 2y dx+ 3(x2 + x2y3)dy = 0

12. (1− xy)y′ + y2 + 3xy3 = 0

13. (x2 + xy2)y′ − 3xy + 2y3 = 0

Challenge Problems:

14. Show that a separable equation is exact.

15. Let P (x) =
∫
p(x) dx. Show that eP (x) is an integrating factor for the linear equation

y′ + p(x)y = q(x).

16. Suppose that a, b, c, and d are constants such that ad − bc 6= 0, and let m and n be arbitrary real
numbers. Show that

(axmy + byn+1)dx+ (cxm+1 + dxyn)dy = 0

has an integrating factor µ(x, y) = xαyβ.
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1.4 Linear Differential Equations

In Section 1.1 we learned how to classify differential equations in terms of order. In this section we will
learn another way. The classification is by linearity.

Definition 1.24 (Linear Differential Equation). An nth order differential equation is said to be linear if it is
of the form

an(x)y(n) + an−1(x)y(n−1) + · · ·+ a2(x)y′′ + a1(x)y′ + a0(x)y = f(x)

where ai(x), 0 ≤ i ≤ n, and f(x) are given functions of the independent variable x, and it is assumed that
an(x) 6≡ 0.

In this chapter, we will be concerned only with first order linear differential equations. Instead of using
the above notation, we will commonly write first order linear differential equations in the form

y′ + p(x)y = q(x). (1.15)

This is exactly the same as the definition above, except that we divided through by a1(x). From here we can
classify linear differential equations further, using the terms homogeneous and inhomogeneous.

Definition 1.25 (Homogeneous/Nonhomogeneous Linear Differential Equations). The linear differential
equation

y′ + p(x)y = q(x)

is called homogeneous if q(x) ≡ 0 and nonhomogeneous otherwise.

For a nonhomogeneous linear differential equation y′+ p(x)y = q(x), the corresponding homogeneous
equation is

y′ + p(x)y = 0. (1.16)

Something worth noting is that a homogeneous linear equation is always separable. This being so, I will skip
how to solve homogeneous linear differential equations and just start with nonhomogeneous linear differential
equations. This leads us to the next topic.

1.4.1 Variation of Parameters

Suppose we had a nonhomogeneous linear equation of the form (1.15). Let’s start by solving the corre-
sponding homogeneous equation (1.16). Let y1 be a solution (a specific one, not the general one) to (1.16),
i.e. y′1 + p(x)y1 = 0. Now we will search for a solution of (1.15) of the form y = uy1, where u is a function
that is to be determined. Start by plugging in y = uy1 into (1.15) to get:

u′y1 + uy′1 + p(x)uy1 = q(x).

Factoring out u from the second and third terms, since y1 is a solution to (1.16) we have:

u′y1 + u(y′1 + p(x)y1) = u′y1 + 0 = u′y1 = q(x),

thus

u′ =
q(x)

y1
.

Now integrate both sides of the above equation to get

u =

∫
q(x)

y1
dx.

So our final solution is of the form:

y = y1

∫
q(x)

y1
dx.

The method we used here is called Variation of Parameters and will be especially useful in the next
chapter when we study second order linear differential equations.
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Example 1.26. Solve the initial value problem

xy′ − 2y = −x2, y(1) = 1.

Solution. The first thing we should do is make it look like our definition of a linear equation, so divide through
by x to get:

y′ − 2

x
y = −x.

Now let’s solve the corresponding homogeneous equation:

y′ − 2

x
y = 0.

Separating the variables we get:
1

y
dy =

2

x
dx

and integrating both sides:
ln |y| = 2 ln |x|+ c

lastly, solving for y we get:
y = cx2

as our general solution to the homogeneous equation (again we did divide by y, so we should check that y = 0
is a solution, and in fact it is, so we may allow c above to be any real number). Now let’s find the general
solution to the nonhomogeneous equation. Let y1 = x2 and following the method outlined above, let

y = uy1 = ux2.

Then
y′ = u′y1 + uy′1 = u′x2 + 2ux,

and plugging it in we get:

y′ − 2

x
y = u′y1 + uy′1 −

2

x
uy1 = u′y1 = u′x2 = −x

so that
u′ = −x−1

and integrating both sides gives:
u = − ln |x|+ c.

Thus the general solution to our problem is

y = (c− ln |x|)x2

which we can rewrite as
y = x2(c− lnx)

if we assume that the domain of the solution is (0,∞), which we will for convenience. Now for the initial
value, plug in the point (1, 1):

1 = 12(c− ln 1) = c− 0 = c

thus c = 1 and our particular solution to the initial value problem is

y = x2(1− lnx).

�
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1.4.2 Integrating Factors

An alternate method to variation of parameters for first order linear equations is using an integrating
factor. This is actually the same integrating factor as in the previous section, but more specialized. The
purpose of the integrating factor in this section is to rewrite equation (1.15) in the more compact form
(µy)′ = µq(x) in which y can easily be solved for.

Theorem 1.27 (Integrating Factor for First Order Linear Differential Equations). Suppose we had the dif-
ferential equation (1.15). Let

µ(x) = e
∫ x p(s)ds,

(where
∫ x

p(s)ds means the antiderivative of p(x) with no integration constant, or setting the integration
constant equal to 0) then µ(x) is an integrating factor for (1.15), and

y =
1

µ(x)

∫
µ(x)q(x) dx

is a solution to (1.15).

Proof. Suppose that µ(x) is an integrating factor for (1.15), then

µ(x)y′ + µ(x)p(x)y = (µ(x)y)′ = µ′(x)y + µ(x)y′

which simplifies to

µ(x)p(x) = µ′(x).

Solving for µ(x) we find that

µ(x) = e
∫
p(x) dx

and since the integrating factor should not have an arbitrary constant in it, choose

µ(x) = e
∫ x p(s) ds.

So we have found µ(x) and it fits with the statement of the theorem, now let’s solve for y. Integrate both
sides of the equation

(µ(x)y)′ = µ(x)q(x)

to get

µ(x)y =

∫
µ(x)q(x)

and dividing by µ(x) we get:

y =
1

µ(x)

∫
µ(x)q(x) dx

as desired.

This method, while less powerful than variation of parameters in general, is much more efficient to apply
since we already know the form of µ(x) without having to solve the homogeneous part of the linear equation
first. Let’s see this method in action with an example.

Example 1.28. Solve the differential equation

x(lnx)y′ + y = 2 lnx.
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Solution. First rewrite it in the proper form:

y′ +
1

x lnx
y =

2

x
.

Now find the integrating factor, using the substitution u = lnx:∫ x 1

x lnx
dx =

∫ u 1

u
du = ln |u| = ln | lnx|

so that
µ(x) = eln | lnx| = | lnx|

which we will choose to be
µ(x) = ln(x)

by restricting x > 1. Now simply plug µ(x) and q(x) into the formula for y, and use the substitution v = lnx:

y =
1

µ(x)

∫
µ(x)q(x) dx =

1

lnx

∫
2 lnx

x
dx =

1

lnx

∫
2v dv =

1

lnx
[(lnx)2 + c].

So our general solution is

y = lnx+
c

lnx
.

�

Exercises

Solve the differential equation. If there is an initial value, find the particular solution satisfying the initial
value.

1. xy′ + 2y = 4x2, y(1) = 4

2. y′ − 2xy = 1, y(a) = b

3. y′ + 2xy = 2x

4. y′ + (secx tanx)y = 0

5. y′ + (cotx)y = 3 cosx sinx

6. y′ + (cosx)y = cosx, y(π) = 0

7. y′ +
1

x
y =

7

x2
+ 3

8. y′ =
1

x2 + 1

9. y′ + 2xy = x2, y(0) = 3

10. xy′ + (x+ 1)y = ex
2

Challenge Problems:
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(11) Show that the method of variation of parameters and the integrating factor method give the same answer
for first order linear equations.

(12) Assume that all functions in this exercise have the same domain.

(a) Prove: If y1 and y2 are solutions of
y′ + p(x)y = q1(x)

and
y′ + p(x)y = q2(x)

respectively, and c1 and c2 are arbitrary constants, then y = c1y1 + c2y2 is a solution of

y′ + p(x)y = q1(x) + q2(x).

(This is known as the principle of superposition.)

(b) Use (a) to show that if y1 and y2 are solutions of the nonhomogeneous equation

y′ + p(x)y = q(x),

then y1 − y2 is a solution of the homogeneous equation

y′ + p(x)y = 0.

(This is known as uniqueness of nonhomogeneous solutions.)

(c) Use (a) to show that if y1 is a solution of y′ + p(x)y = q(x) and y2 is a solution of y′ + p(x)y = 0,
then y1 + y2 is a solution of y′ + p(x)y = q(x). (This shows that the nonhomogeneous solution is
independent of the homogeneous solution.)

(13) Some nonlinear equations can be transformed into linear equations by changing the dependent variable.
Show that if

g′(y)y′ + p(x)g(y) = q(x),

were y is a function of x and g is a function of y, then the new dependent variable z = g(y) satisfies the
linear equation

z′ + p(x)z = q(x).

(14) Use the method outlined in Exercise 13 to solve the following equation:

1

1 + y2
y′ +

2

x
arctan y =

2

x
.

(15) Show that a homogeneous linear differential equation is always separable.
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1.5 Bernoulli Equations

In this section we will study a special type of nonlinear first order differential equation that can always be
transformed into a linear equation with a change of variable: the Bernoulli Equation.

Definition 1.29 (Bernoulli Equation). A Bernoulli Equation is a differential equation of the form

y′ + p(x)y = q(x)yn (1.17)

where n is any number other than 0 or 1.

Theorem 1.30. Making the substitution u = y1−n in the Bernoulli equation (1.17) yields the linear equation

1

1− n
u′ + p(x)u = q(x).

Proof. Start by finding u′:
u′ = (1− n)y−ny′.

Now divide equation (1.17) by yn to get:

y−ny′ + p(x)y1−n = q(x).

Making the proper substitutions we see that

1

1− n
u′ + p(x)u = q(x)

as desired.

Example 1.31. Solve the Bernoulli equation

y′ +
3

x
y = x2y2, x > 0

Solution. By the look of the equation we can tell that n = 2, so it is indeed a Bernoulli equation. We can
either use the formula to transform the equation into a linear one, or do it step by step, which is what we will
do in this example. Start by dividing the equation by y2:

y−2y′ +
3

x
y−1 = x2.

Now make the substitution u = y−1, u′ = −y−2y′:

−u′ + 3

x
u = x2

or equivalently

u′ − 3

x
u = −x2.

An integrating factor is:

µ(x) = e
∫ x −3

x
ds = elnx

−3
= x−3

and thus the general solution with respect to u is

u =
1

µ(x)

∫
µ(x)q(x) dx = x3

∫
−1

x
dx = x3(c− lnx).

Now since, y = u−1 we have our general solution is

y = x−3(x− lnx)−1.

�



1.5. BERNOULLI EQUATIONS 61

Exercises

Solve the differential equation:

1. xy′ + y + x2y2ex = 0

2. xyy′ = y2 − x2

3. xy′ − (3x+ 6)y = −9xe−xy
4
3

4. (1 + x2)y′ + 2xy =
1

(1 + x2)y

5. x2y′ + 2y = 2e
1
x y

1
2

Challenge Problems:

(6) An equation of the form
dy

dx
= p(x)y2 + q(x)y + r(x)

is called a Riccati equation.

(a) If p(x) ≡ 0 show that the equation is linear. If r(x) ≡ 0 show that it is a Bernoulli equation.

(b) If y = y1(x) is some particular solution, show that the change of variable y = y1(x) + 1
u leads to a

linear equation in u.

(7) Use Exercise 6 to solve the equation. A particular solution is given.

y′ = y2 + 2xy + (x2 − 1); y1 = −x.
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1.6 Homogeneous Differential Equations

In the last section we studied a class of nonlinear differential equations that become linear after a change
of variable. In this section we will study a class of differential equations that become separable after a change
of variable: the Homogeneous Equation.

Definition 1.32 (Homogeneous Differential Equation). A homogeneous differential equation is a first
order differential equation that can be written in the form

y′ = f
(y
x

)
. (1.18)

Please do not get this confused with the homogeneous equations of Section 1.4. It is indeed unfortunate
that these equations have the same name.

Anyway, a homogeneous equation can be made separable under the change of variable v =
y

x
. Observe:

If we let v =
y

x
then y = vx and y′ = v′x+ v. Plugging this into (1.18) we get:

v′x+ v = f(v)

which separates as follows:
1

f(v)− v
dv =

1

x
dx.

Example 1.33. Solve the homogeneous equation

x2y′ = xy − y2.

Solution. First let’s try our best to get it in the form of (1.18). So to get y′ by itself, first divide by x2:

y′ =
y

x
− y2

x2
=
y

x
−
(y
x

)2
.

Now let v =
y

x
, then substitution gives:

v′x+ v = v − v2.

This separates into
1

v2
dv = −1

x
dx.

Integration of both sides gives:

−1

v
= − ln |x|+ c

and solving for v:

v =
1

ln |x|+ c
.

Replacing v with
y

x
we get our general solution:

y =
x

ln |x|+ c
.

�
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In general, it is hard to see a priori whether or not a differential equation is homogeneous. We will now
describe a method to tell whether a given equation is homogeneous. First we need a definition, which is yet
another use of the word homogeneous.

Definition 1.34 (Homogeneous of Degree m). A function g of two variables is said to homogeneous of degree
m if

g(tx, ty) = tmg(x, y).

Theorem 1.35. The differential equation

N(x, y)y′ = M(x, y)

is homogeneous if both M and N are homogeneous of the same degree.

Proof. Suppose that M and N are homogeneous of the same degree, say m. Rewrite the differential equation
in the form

y′ =
M(x, y)

N(x, y)
.

Since M and N are homogeneous of degree m we have:

M(x, y) = t−mM(tx, ty), and N(x, y) = t−mN(tx, ty).

Let t =
1

x
and plug it into the above two equations to get:

M(x, y) = xmM
(

1,
y

x

)
and N(x, y) = xmN

(
1,
y

x

)
.

Now plugging the above two equations into our differential equation gives:

y′ =
M(x, y)

N(x, y)
=
xmM

(
1, yx

)
xmN

(
1, yx

) =
M
(
1, yx

)
N
(
1, yx

)
which obviously only depends on y

x since 1 is a constant, thus it is homogeneous since it is of the form
(1.18).

Example 1.36. Determine whether the following equation is homogeneous

y′ =
y3 + 2xy2 + x2y + x3

x(y + x)2
.

Solution. By our theorem N(x, y) ≡ 1 and M(x, y) =
y3 + 2xy2 + x2y + x3

x(y + x)2
. Clearly N is homogeneous of

degree 0 since
N(tx, ty) = 1 = t0 · 1 = t0N(x, y).

So we need M to be homogeneous of degree 0 as well:

M(tx, ty) =
(ty)3 + 2(tx)(ty)2 + (tx)2(ty) + (tx)3

(tx)[(ty) + (tx)]2
=
t3y3 + 2t3xy2 + t3x2y + t3x3

tx[t2(y + x)2]

=
t3(y3 + 2xy2 + x2y + x3)

t3x(y + x)2
= t0

y3 + 2xy2 + x2y + x3

x(y + x)2
= t0M(x, y).

Thus our equation is homogeneous.

�
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Exercises

Determine whether the equation is homogeneous, if it is, solve it. If there is an initial value, find the
particular solution satsifying the initial value.

1. y′ =
y + x

x

2. y′ =
xy + y2

x2
, y(−1) = 2

3. xy′ = y − xe
y
x

4. xy′ − y =
√
x2 + y2

5. xy′ − y = 2y(ln y − lnx)

6. (x2 + y2)
dy

dx
= 5y

7. y′ =
y2 − 3xy − 5x2

x2
, y(1) = −1

8. (x3 + x2y + xy2)y′ = xy2 + 2y3

9. (y − 2x)y′ = y
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1.7 Existence and Uniqueness of Solutions to Differential Equations

In this section, we will state, and prove a theorem concerning when an initial value problem of the form
y′ = f(x, y) y(x0) = y0 has a solution. This is a fairly technical section, so unless you are prepared for some
heavy (for this level) analysis, feel free to just read the theorem itself, and completely ignore the proof.

1.7.1 The Theorem

Fix a point (x0, y0) in the plane, and let R be the rectangle given by the points (x, y) satisfying |x− x0| ≤ a,
|y − y0| ≤ b, that is, R = [x0 − a, x0 + a]× [y0 − b, y0 + b].

Theorem 1.37 (Existence and Uniqueness Theorem for Solutions to First Order Initial Value Problems).
Let f(x, y) and fy(x, y) be continuous on the rectangle R. Let M be the maximum value of |f(x, y)| on R,
and let α = min

(
a, b

M

)
(the smaller of a and b

M ). Then the equation y′ = f(x, y) has a solution y(x) on the
interval (x0−α, x0 +α) satisfying the initial value y(x0) = y0. Moreover, if y1(x) and y2(x) are both solutions
of the initial value problem on an interval containing x0, then y1(x) = y2(x).
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1.8 Additional Exercises

Solve the differential equation if possible. If there is an initial value, find the particular solution that
satisfies the initial value.

1. x dx+ y dy = 0

2. dx+
1

y4
dy = 0

3. sinx dx+ y dy = 0, y(0) = −2

4.
1

x
dx− 1

y
dy = 0

5. (t2 + 1)dt+ (y2 + y)dy = 0

6. (x2 + 1)dx+
1

y
dy = 0, y(−1) = 1

7.
4

t
dt− y − 3

y
dy = 0

8. dx− 1

1 + y2
dy = 0

9. xex
2
dx+ (y5 − 1)dy = 0, y(0) = 0

10. y′ =
y

x2

11. y′ =
xex

2y

12. y′ =
x2y − y
y + 1

13.
dx

dt
=
x

t

14.
dx

dt
= 8− 3x, x(0) = 4

Determine whether the given equation is homogeneous, and if so, solve it.

(15) y′ =
x2 + 2y2

xy

(16) xy′ = y − x
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(17) (xy + (xy2)
1
3 )y′ = y2

(18) y′ =
y

x+
√
xy

Determine whether or not the given equation is exact. If it is, solve it, if not, try to find an integrating
factor. If you cannot find an integrating factor by the methods given above, state so. If there is an initial
value, find the particular solution satsifying the initial value.

(19) (xy + 1)dx+ (xy − 1)dy = 0

(20) (y + 2xy3)dx+ (1 + 3x2y2 + x)dy = 0, y(1) = −5

(21) (y + 1)dx− xdy = 0

(22) ex
3
(3x2y − x2)dx+ ex

3
dy = 0

(23) −y
2

t2
dt+

2y

t
dy = 0, y(2) = −2

(24) (y + x3y3)dx+ x dy = 0

(25) (y sinx+ xy cosx)dx+ (x sinx+ 1)dy = 0

(26) −2y

t3
dt+

1

t2
= 0, y(2) = −2

(27) (y + x4y2)dx+ x dy = 0

(28) y2 dt+ t2 dy = 0

(29) (t2 − x)dt− t dx = 0, x(1) = 5

(30) 2xy dx+ y2 dy = 0

(31) sin t cosx dt− sinx cos t dx = 0

(32) y dx+ 3x dy = 0

(33)

(
2xy2 +

x

y2

)
dx+ 4x2y dy = 0

Solve the differential equation. If there is an initial value, find the particular solution satisfying the initial
value.

(34)
dy

dx
+ 5y = 0

(35) y′ + y = y2
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(36)
dy

dx
+ 2xy = 0

(37) y′ +
2

x
y = x, y(1) = 0

(38) y′ +
1

x
y = 0

(39) xy′ + y = xy3

(40) y′ +
2

x
y = 0

(41) y′ + 6xy = 0, y(π) = 5

(42) y′ − 7y = ex

(43) y′ + y = y2ex

(44) y′ = cosx

(45) y′ +
2

x
y = −x9y5, y(−1) = 2

(46) y′ − 3

x2
y =

1

x2

(47) y′ + xy = 6x
√
y

(48)
dy

dx
+ 50y = 0

(49)
dv

dt
+ 2v = 32, v(0) = 0

(50)
dp

dt
− 1

t
p = t2 + 3t− 2

(51) y′ + y = y−2

(52)
dQ

dt
+

2

20− t
Q = 4

(53)
dN

dt
+

1

t
N = t,N(2) = 8

Determine (a) the order, (b) the unknown function, and (c) the independent variable for each of the given
differential equations.
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(54) (y′′)2 − 3yy′ + xy = 0

(55) y(4) + xy′′′ + x2y′′ − xy′ + sin y = 0

(56)
dnx

dyn
= y2 + 1

(57)

(
d2y

dx2

) 3
2

+ y = x

(58)
d7b

dp7
= 3p

(59)

(
db

dp

)7

= 3p

Determine if the given functions are solutions to the given differential equation.

(60) y′ − 5y = 0

(a) y = 5

(b) y = 5x

(c) y = x5

(d) y = e5x

(e) y = 2e5x

(f) y = 5e2x

(61) y′ − 2ty = t

(a) y = 2

(b) y = −1

2

(c) y = et
2

(d) y = et
2 − 1

2

(e) y = −7et
2 − 1

2

(62)
dy

dx
=

2y4 + x4

xy3

(a) y = x

(b) y = x8 − x4

(c) y =
√
x8 − x4

(d) y = (x8 − x4)
1
4
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(63) y′′ − xy′ + y = 0

(a) y = x2

(b) y = x

(c) y = 1− x2

(d) y = 2x2 − 2

(e) y = 0

Find the constant c such that the given function satisfies the given initial values.

(64) x(t) = ce2t

(a) x(0) = 0

(b) x(0) = 1

(c) x(1) = 1

(d) x(2) = −3

(65) x(t) = c(1− x2)

(a) y(0) = 1

(b) y(1) = 0

(c) y(2) = 1

(d) y(1) = 2

Find the constants c1 and c2 such that the given function satisfies the given initial value(s).

(66) y(x) = c1 sinx+ c2 cosx

(a) y(0) = 1, y′(0) = 2

(b) y(0) = 2, y′(0) = 1

(c) y
(
π
2

)
= 1, y′

(
π
2

)
= 2

(d) y(0) = 0, y′(0) = 0

(67) y(x) = c1e
x + c2e

−x + 4 sinx; y(0) = 1, y′(0) = −1

(68) y(x) = c1e
x + c2e

2x + 3e3x; y(0) = 0, y′(0) = 0

(69) y(x) = c1e
x + c2xe

x + x2ex; y(1) = 1, y′(1) = −1

(70) y(x) = c1 sinx+ c2 cosx+ 1; y(π) = 0, y′(π) = −1



Chapter 2

Second-Order Differential Equations

2.1 Constant Coefficient Homogeneous Linear Equations

Second order differential equations have historically been studied the most due to the fact that they are
very applicable. For example if you are given the position function, x(t) of a moving body, it’s acceleration
is x′′(t). Another example is Newton’s law: F = ma, which again, if you are given the position function for
the body attached to the spring, you get: F (t) = mx′′(t). One more example is an adaption of Kirchoff’s

law for an RLC circut: LI ′ + RI +
1

C
Q = E(t), where L is inductance, I is current, R is resistance, C is

capacitance, Q is charge on the capacitance, and E is the applied voltage. This becomes a second order

differential equation for the current I by taking the time derivative of both sides: LI ′′ +RI ′ +
1

C
I = E′.

Definition 2.1 (Second Order Linear Differential Equation). A second order differenital equation is said to
be linear if it takes the form

p(x)y′′ + q(x)y′ + r(x)y = f(x).

It is called homogeneous if f(x) ≡ 0 and nonhomogeneous otherwise.

In this section we will assume that p(x), q(x), and r(x) are constant functions and that f(x) ≡ 0. Thus
our equations will take the form

ay′′ + by′ + cy = 0, (2.1)

with a 6= 0. Clearly the function y ≡ 0 is a solution, and it will be called the trivial solution just as before.
Any other kind of solution will be called nontrivial. The subject of differential equations is devoted to finding
nontrivial solutions to differential equations, which is exactly what we will be doing here.

2.1.1 The Characteristic Polynomial

How do we find solutions to (2.1)? Let’s look at the equation and try to interpret what it means. Suppose
that y is a solution to (2.1). This equation is a linear combination of y, y′, and y′′ (a linear combination of
two functions f and g is a sum of the form: c1f + c2g where c1 and c2 are any two numbers), so that probably
means that taking derivatives of y shouldn’t change y other than maybe multiplying it by a constant. What
function do you know of that does that? Hopefully you were thinking of the function y = erx since y′ = rerx

and y′′ = r2erx. Suppose that y = erx is indeed a solution to (2.1). Then taking derivative we get:

y′ = rerx

and
y′′ = r2erx.

Plugging this in we have

ay′′ + by′ + cy = ar2erx + brerx + cerx = (ar2 + br + c)erx = 0

71
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which implies that, since erx is never zero:

ar2 + br + c = 0. (2.2)

Thus we have at least one solution of the form erx and usually two. Notice here that r may be a complex
number. There are three cases:

1. 2 distinct real roots

2. a repeated real root

3. complex conjugates

In the next three subsections we will cover these three cases. Equation (2.2) is called the characteristic
polynomial of (2.1).

2.1.2 Distinct Real Roots

Suppose that we are in the case in which the characteristic polynomial gives us two distinct real roots.
Let’s call them r1 and r2. Then we have two solutions: one of the form er1x and er2x.

Theorem 2.2 (Distinct Real Roots). Suppose that the characteristic polynomial of ay′′ + by′ + cy = 0 has
two real distinct roots: r1 and r2. Then the general solution to ay′′ + by′ + cy = 0 is

yG = c1e
r1x + c2e

r2x.

Proof. Since r1 and r2 are roots of the polynomial ar2 + br + c = 0, we instantly know that:

ar21 + br1 + c = 0

and

ar22 + br2 + c = 0.

Knowing this, let’s plug yG into the differential equation. First calculate y′G and y′′G:

y′G = c1r1e
r1x + c2r2e

r2x

and

y′′G = c1r
2
1e
r1x + c2r

2
2e
r2x,

and plug them into the differential equation to get:

ay′′G + by′G + cyG = a(c1r
2
1e
r1x + c2r

2
2e
r2x) + b(c1r1e

r1x + c2r2e
r2x) + c(c1e

r1x + c2e
r2x)

= (ar21 + br1 + c)c1e
r1x + (ar22 + br2 + c)c2e

r2x

= 0(c1e
r1x) + 0(c2e

r2x) = 0

Thus yG is the general solution to our differential equation.

I used the notation yG here to denote the general solution. I will be using this notation from here on out
to mean general solution.

Example 2.3. Solve the differential equation

y′′ − y′ − 2y = 0.
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Solution. Start by finding the characteristic polynomial:

r2 − r − 2 = 0.

Now this factors into:
r2 − r − 2 = (r − 2)(r + 1) = 0

so our roots are: r = −1, 2. Thus our general solution is of the form:

yG = c1e
−x + c2e

2x.

�

Remark 2.4. It may seem kind of akward when one of the roots of the characteristic polynomial is r = 0,
because then you get a solution of the form:

yG = c1e
r1x + c2e

0x = c1e
r1x + c2.

This is, in fact, the correct solution and is not akward at all as y1 = er1x and y2 = 1 are linearly independent
functions (we will define this term in the next section).

2.1.3 Repeated Real Roots

Now that we have covered when we have two distinct real roots, we need to handle the case when there is
a repeated real root. So suppose that our characteristic polynomial has only one root: k (i.e. the polynomial
factors as (r − k)2 = 0). I claim that the general solution is

yG = c1e
kx + c2xe

kx.

To prove this, we will have to use a method similar to variation of parameters for first order differential
equations. The method we are going to use is actually called reduction of order which we will study in section
2.4. First note that if the characteristic polynomial has a repeated root k, it can be written in the form:

(r − k)2 = r2 − 2kr + k2 = 0

and thus the differential equation looks like:

y′′ − 2ky′ + k2y = 0

Theorem 2.5 (Repeated Real Roots). Suppose that the characteristic polynomial of y′′− 2ky′+ k2y = 0 has
one repeated root: k. Then the general solution to y′′ − 2ky′ + k2y = 0 is

yG = c1e
kx + c2xe

kx.

Proof. We already know that y1 = ekx is a solution to y′′ − 2ky′ + k2y = 0, but we should be able to
find a second linearly independent solution to it. To find the general solution, assume that it has the form
yG = uy1 = uekx. Then

y′G = u′ekx + kuekx

and
y′′G = u′′ekx + 2ku′ekx + k2uekx.

Now plug this in, and we get:

y′′G − 2ky′G + k2yG = u′′ekx + 2ku′ekx + k2uekx − 2k(u′ekx + kuekx) + k2uekx

= u′′ekx + 2ku′ekx + k2uekx− 2ku′ekx − 2k2uekx

= u′′ekx = 0
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Thus we are left with
u′′ = 0

which gives
u = (c1 + c2x).

Plugging this into the formula for our general solution we get:

yG = uy1 = (c1 + c2x)ekx = c1e
kx + c2xe

kx

as predicted.

Example 2.6. Solve the differential equation

2y′′ + 4y′ + 2y = 0.

Solution. The characteristic polynomial for this differential equation is:

2r2 + 4r + 2 = 0.

Dividing both sides by 2 and factoring we have

r2 + 2r + 1 = (r + 1)2 = 0

so the root is r = 1. Thus our general solution is:

yG = c1e
−x + c2xe

−x.

�

2.1.4 Complex Roots

Lastly, we come to the case in which the roots of the characteristic polynomial are a conjugate pair of
complex numbers, say r1 = α+ iβ and r2 = α− iβ. This means that our two solutions should look like:

y1 = e(α+iβ)x

and
y2 = e(α−iβ)x.

This is correct, but not really useful as it only gives us data in the complex plane, not strictly real data (the
output can be complex, not just real). However, there is a way of manipluating these two solutions, by taking
complex-linear combinations of them, to get solutions that only give real data. First let’s rewrite y1 and y2
using Euler’s formula (eix = cosx+ i sinx).

y1 = e(α+iβ)x = eαxeiβx = eαx(cosβx+ i sinβx)

and
y2 = e(α−iβ)x = eαxe−iβx = eαx(cosβx+ i sin−βx) = eαx(cosβx− i sinβx).

Now consider the following:

y3 =
1

2
(y1 + y2) =

1

2
(eαx(cosβx+ i sinβx) + eαx(cosβx− i sinβx)) = eαx

1

2
(2 cosβx) = eαx cosβx

and

y4 =
1

2i
(y1 − y2) =

1

2
(eαx(cosβx+ i sinβx)− eαx(cosβx− i sinβx)) = eαx

1

2
(2i sinβx) = eαx sinβx.
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With these two new solutions (they are still solutions since they are just linear combinations of y1 and y2) we
can construct a new general solution that only outputs real data:

yG = c1e
αx cosβx+ c2e

αx sinβx.

Let’s verify that this is still a solution of the differential equation:

If the characteristic polynomial indeed has the roots α± iβ, then it is of the form r2−2αr+(α2 +β2) = 0,
and thus the differential equation looks like: y′′ − 2αy′ + (α2 + β2)y = 0. Now for the derivatives:

yG = eαx(c1 cosβx+ c2 sinβx),

y′G = eαx(αc1 cosβx+ βc2 cosβx+ αc2 sinβx− βc1 sinβx),

and

y′′G = eαx(α2c1 cosβx− β2c1 cosβx+ α2c2 sinβx− β2c2 sinβx+ 2αβc2 cosβx− 2αβc1 sinβx).

Plugging these in we get:

y′′G − 2αy′G + (α2 + β2)yG = eαx(α2c1 cosβx− β2c1 cosβx+ α2c2 sinβx− β2c2 sinβx+ 2αβc2 cosβx− 2αβc1 sinβx)

−2α(eαx(αc1 cosβx+ βc2 cosβx+ αc2 sinβx− βc1 sinβx))

+(α2 + β2)(eαx(c1 cosβx+ c2 sinβx))

= eαx
[
(α2c1 − β2c1 + 2αβc2 − 2α2c1 − 2αβc2 + α2c1 + β2c1) cosβx

+(α2c2 − β2c2 − 2αβc1 − 2α2c2 + 2αβc1 + α2c2 + β2c2) sinβx
]

= eαx [0 cosβx+ 0 sinβx] = 0

Thus yG is our general solution.

Theorem 2.7 (Complex Conjugate Roots). Suppose that the characteristic polynomial of ay′′ + by′ + cy = 0
has two real complex roots: r1 = α+ iβ and r2 = α− iβ. Then the general solution to ay′′ + by′ + cy = 0 is

yG = c1e
αx cosβx+ c2e

αx sinβx.

Proof. The proof is in the discussion above.

Remark 2.8. Technically we have not completely proven that the above are the general solutions to their
respective equations because we have not shown that the two solutions in each general solution form a linearly
independent set of functions. This will be done in the next section.

Example 2.9. Solve the differentiale equation

y′′ + 9y = 0.

Solution. The characteristic polynomial is

r2 + 9 = 0,

thus the roots are r = ±3i. So our general solution is:

yG = c1 cos 3x+ c2 sin 3x.

�
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Exercises

Solve the following differential equations:

1. y′′ − y′ − 6y = 0

2. y′′ + 2y′ = 0

3. y′′ + 2y′ + y = 0

4. y′′ + 9y = 0

5. y′′ − 6y′ + 13y = 0

6. y′′ − 4y′ + 5y = 0

7. y′′ − 4y′ + 4y = 0

8. y′′ + 6y′ + 10y = 0

9. y′′ + y′ = 0

10. y′′ + 6y′ + 13y = 0

11. 10y′′ − 3y′ − y = 0

12. 4y′′ + 4y′ + 10y = 0

Solve the initial value problems:

(13) y′′ − 4y′ + 3y = 0; y(0) = −1, y′(0) = 3

(14) y′′ + 4y = 0; y(π) = 1, y′(π) = −4

(15) 6y′′ − y′ − y = 0; y(0) = 10, y′(0) = 0

(16) 4y′′ − 4y′ − 3y = 0; y(0) =
13

12
, y′(0) =

23

24

(17) y′′ + 7y′ + 12y = 0; y(0) = −1, y′(0) = 0

(18) 36y′′ − 12y′ + y = 0; y(0) = 3, y′(0) =
5

2

Challenge Problems:

(19)
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(a) Suppsoe that y is a solution of the differential equation

ay′′ + by′ + cy = 0.

Let z(x) = y(x− x0) where x0 is an arbitrary real number. Show that

az′′ + bz′ + cz = 0.

(b) Let z1(x) = y1(x − x0) and z2(x) = y2(x − x0), where yG = c1y1 + c2y2 is the general solution to
ay′′ + by′ + cy = 0. Show that zG = c1z1 + c2z2 is also a general solution of ay′′ + by′ + cy = 0.

(20) Prove that if the characteristic equation of

ay′′ + by′ + cy = 0

has a repeated negative root or two roots with negative real parts, then every solution of ay′′+by′+cy = 0
approaches zero as x→∞.

(21) Consider the differential equation ay′′ + by′ + cy = d where d is any real number. Find it’s general
solution. Hint: First try to find a particular solution by finding a function to plug in that gives d as an
output, then use the principle of superposition.

(22) Consider the differential equation ay′′ + by′ + cy = 0 with a > 0. Find conditions on a, b, and c such
that the roots of the characteristic polynomial are:

(a) real, different, and negative.

(b) real with opposite signs.

(c) real, different, and positive.

(23) Let f and g be any twice differentiable functions. Suppose that L[y] = p(x)y′′ + q(x)y′ + r(x)y. Show
that L[f + g] = L[f ] + L[g].
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2.2 The Wronskian

2.2.1 General Homogeneous Linear Equations

In this section we will study the general solutions of the general homogeneous linear differential equation:

y′′ + q(x)y′ + r(x)y = 0. (2.3)

First we need to make clear a few definitions:

Definition 2.10 (Linear Combination). Suppose that y1 and y2 are two functions. Then a linear combination
of y1 and y2 is a function of the form

c1y1 + c2y2

where c1 and c2 are arbitrary constants.

Definition 2.11 (Fundamental Set of Solutions). Suppose that y1 and y2 are two solutions of (2.3). The set
{y1, y2} is called a fundamental set of solutions for (2.3) if every solution of (2.3) can be written as a linear
combination of y1 and y2.

Definition 2.12 (General Solution). Suppose that {y1, y2} is a fundamental set of solutions to (2.3). Then
the general solution to (2.3) is

yG = c1y1 + c2y2.

This definition of a fundamental set of solutions really helps nail down what a general solution to (2.3) is,
however how can we tell if two solutions of (2.3) form a fundamental set of solution? The answer is: ”if they
are linearly independent.”

2.2.2 The Wronskian

Definition 2.13 (Linearly Independent). Two functions y1 and y2 are said to be linearly independent on
the interval (a, b) if neither is a constant multiple of the other on (a, b), i.e. for any value of c the following
equation never holds for all x ∈ (a, b): y1(x) = cy2(x). If two functions are not linearly independent, they are
called linearly dependent.

Remark 2.14. Another way to show linear dependence is to show that

c1y1(x) + c2y2(x) = 0

for all x ∈ (a, b) where c1 and c2 are not both zero.

Ok, this helps us, since if two solutions, y1 and y2, are not linearly independent, the following holds
(suppose that y1 = ky2):

c1y1 + c2y2 = c1(ky2) + c2y2 = (c1k + c2)y2,

which is no longer a linear combination of two solutions, which is what we should have since the fact that we
have two derivatives tells us that there should be two linearly independent solutions (think of each derivative
as a degree of freedom). We have made some progress, however, it might not be easy to show that two
functions are linearly independent (or even linearly dependent). We would like a way that makes it easy to
check whether or not functions are linearly independent. This leads us to the Wronskian, named after the the
Polish mathematician Wronski:

Definition 2.15 (The Wronskian). The Wronskian of two functions y1 and y2 at the point x is given by:

W (x; y1, y2) =

∣∣∣∣ y1(x) y2(x)
y′1(x) y′2(x)

∣∣∣∣ = y1(x)y′2(x)− y′1(x)y2(x).

When it is clear which functions are involved, we will often shorten the notation to W (x).
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To see how this is useful to us, consider the following theorem:

Theorem 2.16. Let y1 and y2 be functions on an interval (a, b). If the functions are linearly dependent on
(a, b), then W (x; y1, y2) = 0 for all x ∈ (a, b). Thus if W (x; y1, y2) 6= 0 for at least one point in (a, b), the
functions are linearly independent.

Notice that the second statement is just the contrapositive of the first, so we only have to prove the first
statement (which is MUCH easier to prove).

Proof. Suppose that the functions y1 and y2 are linearly dependent on an interval (a, b). Then for all x ∈ (a, b)
we have

y1(x) = cy2(x),

thus the Wronskian is:

W (x) =

∣∣∣∣ y1(x) y2(x)
y′1(x) y′2(x)

∣∣∣∣ =

∣∣∣∣ cy2(x) y2(x)
cy′2(x) y′2(x)

∣∣∣∣ = cy2(x)y′2(x)− cy′2(x)y2(x) ≡ 0,

as claimed.

However, do not assume that this theorem means that if the Wronskian of two functions is identically zero
that the two functions are linearly dependent (this is usually said as ”the converse is not true”). Here is a
counter example to the converse:

Example 2.17. Let y1(x) = x2 and y2(x) = x|x| =

{
x2, x ≥ 0
−x2, x < 0

. Show that y1 and y2 are linearly

independent on R.

Solution. The easiest way to check linear independence is to show that their Wronskian is nonzero for at least
one point in R. First note that y′2(0) exists and is zero. When x ≥ 0 we have:

W (x) =

∣∣∣∣ x2 x2

2x 2x

∣∣∣∣ ≡ 0,

and for x < 0 we have:

W (x) =

∣∣∣∣ x2 −x2
2x −2x

∣∣∣∣ ≡ 0.

So the ”Wronskian test” for linear independence fails because W (x) ≡ 0 on R. So, suppose that y1 and y2
are linearly dependent on R, i.e.

c1y1(x) + c2y2(x) = c1x
2 + c2x|x| = 0

with c1 and c2 are not both zero. Plugging in x = 1 we get the equation: c1 + c2 = 0; and plugging in x = −1
we get the equation c1 − c2 = 0. So we have the system of equations:{

c1 + c2 = 0
c1 − c2 = 0

which has the solution c1 = c2 = 0, a contradiction to our assumption. Thus y1 and y2 are linearly independent
on R.

�

Now, we will state a ”unifying theorem” without proof:

Theorem 2.18. Suppose that q and r are continuous on the interval (a, b), and let y1 and y2 be solutions of
(2.3) on (a, b). Then the following are equivalent (either all the statements are true, or they are all false):
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(a) The general solution of (2.3) is yG = c1y1 + c2y2.

(b) {y1, y2} is a fundamental set of solutions of (2.3) on (a, b).

(c) {y1, y2} is linearly independent on (a, b).

(d) The Wronskian of {y1, y2} is nonzero at some point in (a, b).

(e) The Wronskian of {y1, y2} is nonzero at all points in (a, b).

This is a truly remarkable theorem as it allows us to prove so much with so little (the equivalence of (d)
and (e) for example)!!!

In the previous section we found what the general solutions of constant coefficient second order linear differ-
ential equations are, except that we didn’t completely prove that the two solutions were linearly independent.
Let’s do that now.

Theorem 2.19. Consider the differential equation

ay′′ + by′ + cy = 0.

(a) If the characteristic polynomial has two distinct real roots, r1 and r2, then y1 = er1x and y2 = er2x form
a fundamental set of solutions for ay′′ + by′ + cy = 0 on R.

(b) If the characteristic polynomial has a repeated real root, k, then y1 = ekx and y2 = xekx form a
fundamental set of solutions for ay′′ + by′ + cy = 0 on R.

(c) If the characteristic polynomial has two complex conjugate roots, α+ iβ and α− iβ, then y1 = eαx cosβx
and y2 = eαx sinβx form a fundamental set of solutions for ay′′ + by′ + cy = 0 on R.

Proof.

(a) Construct the Wronskian for y1 and y2:

W (x) =

∣∣∣∣ er1x er2x

r1e
r1x r2e

r2x

∣∣∣∣ = r2e
r1xer2x − r1er1xer2x = (r2 − r1)er1xer2x 6= 0 ∀x ∈ R,

since r1 6= r2 and er1x and er2x are never zero.

(b) Construct the Wronskian for y1 and y2:

W (x) =

∣∣∣∣ ekx xekx

kekx ekx + kxekx

∣∣∣∣ = e2kx + kxe2kx − kxekx = e2kx 6= 0, ∀x ∈ R.

(c) Left as an exercise to the reader.

Exercises

Show that the following pairs of functions are linearly independent on the given interval:

1. y1 = eax, y2 = ebx, a 6= b, (−∞,∞)

2. y1 = cos ax, y2 = sin ax, (−∞,∞)

3. y1 = 1, y2 = eax, a 6= 0, (−∞,∞)
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4. y1 = eax cos bx, y2 = eax sin bx, (−∞,∞)

5. y1 =
1

x
, y2 =

1

x3
, (0,∞)

Determine whether or not the following pair of functions is linearly independent or linearly dependent on the
given interval:

(6) y1 = xm, y2 = |x|m, m a positive integer, (−∞,∞)

Challenge Problems:

(7) Show that if y1 and y2 are C2 functions on the interval (a, b) and W (x; y1, y2) has no zeros in (a, b),
then the equation

1

W (x; y1, y2)

∣∣∣∣∣∣
y y1 y2
y′ y′1 y′2
y′′ y′′1 y′′2

∣∣∣∣∣∣ = 0

can be written as
y′′ + q(x)y′ + r(x)y = 0

with {y1, y2} as a fundamental set of solutions on (a, b). Hint: Expand the determinant by cofactors of
its first column.

(8) Use Exercise 6 to find a differential equation whose fundamental set of solutions is the given pair of
functions:

(a) {x, x lnx}

(b) {x, e2x}

(c) {coshx, sinhx}

(d) {x2 − 1, x2 + 1}

(9) Prove the following:

Theorem 2.20 (Abel’s Formula). Suppose that q and r are continuous on (a, b), let y1 and y2 be
solutions of

y′′ + q(x)y′ + r(x)y = 0

on (a, b). Let x0 be any point in (a, b). Then

W (x; y1, y2) = W (x0; y1, y2)e
−

∫ x
x0
q(t) dt

, x ∈ (a, b).

Hint: Take the derivative of W (x; y1, y2) and use the equations y′′1 = −qy′1− ry1 and y′′2 = −qy′2− ry2 to
transform the derivative of W into a separable equation in terms of W . Then use the method on page
21 to deal with the initial value W (x0).
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2.3 Non-Homogeneous Linear Equations

In this section we will introduce non-homogeneous linear equations and study certain kinds. Recall that
a non-homogeneous second order linear differential equation has the form:

y′′ + q(x)y′ + r(x)y = f(x) (2.4)

where f(x) 6≡ 0.

In previous sections we have been studying the same equation, but with f(x) ≡ 0. So how do we deal with
this case? We need to somehow plug a function into the differential equation’s left hand side (y′′+q(x)y′+r(x)y)
and produce f(x). Let’s suppose such a function exists and call it yp for particular solution. Is this the
general solution to (2.4)? The answer is no. The general solution is of the form yG = yH + yp, where yH is
the general solution of the associated homogeneous equation:

y′′ + q(x)y′ + r(x)y = 0.

Why is this true? It is true because 0 + f(x) = f(x). Sound confusing? Observe the following:

We know that y′′H + q(x)y′H + r(x)yH = 0 and that y′′p + q(x)y′p + r(x)yp = f(x), so let’s assume that
yG = yH + yp and plug yG into (2.4):

y′G = y′H + y′p

and
y′′G = y′′H + y′′p ,

so

y′′G+q(x)y′G+r(x)yG = y′′H+y′′p+q(x)(y′H+y′p)+r(x)(yH+yp) = (y′′H+q(x)y′H+r(x)yH)+(y′′p+q(x)y′p+r(x)yp) = 0+f(x) = f(x).

See? Easy as 0 + f(x) = f(x)!!!

Example 2.21. Show that yp = e2x is a particular solution to y′′ + 2y′ − 3y = 5e2x and find the solution to
the IVP

y′′ + 2y′ − 3y = 5e2x; y(0) = 5, y′(0) = 2.

Solution. First let’s check that yp = e2x is the particular solution:

y′′p + 2y′p − 3yp = 4e2x + 4e2x − 3e2x = 5e2x.

Thus yp is in fact the particular solution. Now to solve the IVP we need to first find the general solution to
the differential equation. The characteristic polynomial for the associated homogeneous equation is

r2 + 2r − 3 = (r + 3)(r − 1) = 0

so the homogeneous solution is yH = c1e
−3x + c2e

x. Thus the general solution to the non-homogeneous
equation is

yG = c1e
−3x + c2e

x + e2x.

To use the initial value we first need to know what y′G is:

y′G = −3c1e
−3x + c2e

x + 2e2x.

Now plug in the initial values: {
yG(0) = c1 + c2 + 1 = 5
y′G(0) = −3c1 + c2 + 2 = 2
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which simplifies to: {
yG(0) = c1 + c2 = 4
y′G(0) = −3c1 + c2 = 0

which yields the solution c1 = 1, and c2 = 3. So the solution to the IVP is

y = e−3x + 3ex + e2x.

�

2.3.1 Superposition

Theorem 2.22 (Principle of Superposition). Suppose that yp1 is a particular solution of

y′′ + q(x)y′ + r(x)y = f1(x)

and that yp2 is a particular solution of

y′′ + q(x)y′ + r(x)y = f2(x).

Then
yp = yp1 + yp2

is a particular solution of
y′′ + q(x)y′ + r(x)y = f1(x) + f2(x).

This can be generalized quite easily to the equation

y′′ + q(x)y′ + r(x)y = f(x)

where f(x) = f1(x) + · · ·+ fn(x).

Example 2.23. Given that yp1 = 1
15x

4 is a particular solution of

x2y′′ + 4xy′ + 2y = 2x4

and that yp2 = 1
3x

2 is a particular solution of

x2y′′ + 4xy′ + 2y = 4x2,

find a particular solution to
x2y′′ + 4xy′ + 2y = 2x4 + 4x2.

Solution. By the principle of superposition, our particular solution should be

yp = yp1 + yp2 =
1

15
x4 +

1

3
x2.

Let’s verify this by plugging it into the differential equation:

x2y′′p + 4xy′p + 2yp = x2
(

12

15
x2 +

2

3

)
+ 4x

(
4

15
x3 +

2

3
x

)
+ 2

(
1

15
x4 +

1

3
x2
)

=
12

15
x4 +

2

3
x2 +

16

15
x4 +

8

3
x2 +

2

15
x4 +

2

3
x2

=
30

15
x4 +

12

3
x2

= 2x4 + 4x2

as required.

�
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2.3.2 Introduction to Undetermined Coefficients

In this section we will begin investigating a technique for solving equations of the form

ay′′ + by′ + cy = Pn(x)

where a, b, and c are constants, a 6= 0, and Pn(x) is a polynomial of degree n.

Theorem 2.24 (Method of Undetermined Coefficients). Suppose that we have a differential equation of the
form

ay′′ + by′ + cy = Pn(x), a 6= 0

where Pn(x) is a polynomial of degree n. Then the particular solution to the differential equation is of the
form:

If c 6= 0)
yp = Anx

n +An−1x
n−1 + · · ·+A2x

2 +A1x+A0

where the Ai, i = 0, ..., n are constants to be determined by plugging yp into the differential equation and
equating coefficients.

If c = 0 & b 6= 0)
yp = Anx

n+1 +An−1x
n + · · ·+A1x

2 +A0x

where the Ai, i = 0, ..., n are constants to be determined by plugging yp into the differential equation and
equating coefficients.

If b = c = 0) Just integrate both sides of the differential equation twice.

Example 2.25. Find the general solution of the given equations:

(a) y′′ − 4y′ + 5y = 5x+ 1

(b) y′′ + y′ = x2 + 2x+ 1

Solution.

(a) The characteristic polynomial for the corresponding homogeneous equation is

r2 − 4r + 5 = 0

which has roots:

r =
4±
√

16− 20

2
= 2± i

so
yH = c1e

2x cosx+ c2e
2x sinx.

Now by the theorem above assume that yp = A1x+A0. Then plugging in gives:

y′′p − 4y′p + 5yp = 0− 4(A1) + 5(A1x+A0) = (5A1)x+ (5A0 − 4A1) = 5x+ 1

and comparing coefficients gives the system:{
5A1 = 5

5A0 − 4A1 = 1

which yields the solution A0 = 1 and A1 = 1. Thus the particular solution is

yp = x+ 1

and the general solution is
yG = c1e

2x cosx+ c2e
2x sinx+ x+ 1.
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(b) The characteristic polynomial for the corresponding homogeneous equation is

r2 + r = r(r + 1) = 0

which has roots:
r = −1, 0

so
yH = c1e

−x + c2.

Now since c = 0 and b 6= 0 in this equation, we guess that yp = A2x
3 + A1x

2 + A0x. Then plugging in
gives:

y′′p + y′p = 6A2x+ 2A1 + 3A2x
2 + 2A1x+A0 = (3A2)x

2 + (6A2 + 2A1)x+ (2A1 +A0) = x2 + 2x+ 1

and comparing coefficients gives the system:
3A2 = 1

2A1 + 6A2 = 5
A0 + 2A1 = 1

which yields the solution A0 = −2, A1 = 3
2 , and A2 = 1

3 . Thus the particular solution is

yp =
1

3
x3 +

3

2
x2 − 2x

and the general solution is

yG = c1e
−x + c2 +

1

3
x3 +

3

2
x2 − 2x.

�

Exercises

Find the general solution, and if an initial value is given, solve the IVP:

1. y′′ + 5y′ − 6y = −18x2 + 18x+ 22

2. y′′ + 8y′ + 7y = 7x3 + 24x2 − x− 8

3. y′′ + 2y′ + 10y = 10x3 + 6x2 + 26x+ 4; y(0) = 2, y′(0) = 9

4. y′′ + 6y′ + 10y = 20x+ 22; y(0) = 2, y′(0) = −2

5. y′′ − y′ − 6y = 2

6. y′′ + 3y′ + 2y = 4x2

7. y′′ + 2y = −4

8. y′′ + y = 3x2

9. Verify that yp = sin 2x is a solution of y′′ − y = −5 sin 2x and use it to find the general solution.
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Challenge Problems:

(10) Prove Theorem 1 of this section.

(11) Generalize Theorem 1 to the case where f(x) = f1(x) + · · · + fn(x). (You don’t have to prove the
generalization, just state it.)

(12) Show that the equation
b0x

2y′′ + b1xy
′ + b2y = cxa

has a solution of the form y = Axa provided that

b0a(a− 1) + b1a+ b2 6= 0.

(13) If c 6= 0 and d is a constant, show that a solution to the equation

ay′′ + by′ + cy = d

is y =
d

c
. What would the solution look like if c = 0?
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2.4 Reduction of Order

The method of reduction of order is a way to solve a non-homogeneous second order linear differential
equation:

p(x)y′′ + q(x)y′ + r(x)y = f(x),

provided that we know a nontrivial solution to the associated homogeneous equation:

p(x)y′′ + q(x)y′ + r(x)y = 0.

Reduction of order does exactly what it sounds like it does: it reduces the order of the differential equation.
More precisely, it reduces it from a second order equation to a first order equation. Let’s see how this method
gets its name:

Suppose that y1 is a nontrivial solution to p(x)y′′+q(x)y′+r(x)y = 0, and let y = uy1 where u is a function
to be determined. Plug y into p(x)y′′ + q(x)y′ + r(x)y = f(x) (y′ = u′y1 + uy′1, y

′′ = u′′y1 + 2u′y′1 + uy′′1):

p(x)(u′′y1 + 2u′y′1 + uy′′1) + q(x)(u′y1 + uy′1) + r(x)(uy1) = (p(x)y1)u
′′ + (2p(x)y′1 + q(x)y1)u

′ + (p(x)y′′1 + q(x)y′1 + r(x)y1)u

= f(x).

But notice that the coefficient in front of u is zero since p(x)y′′1 + q(x)y′1 + r(x)y1 = 0, thus our equation
reduces to:

(p(x)y1)u
′′ + (2p(x)y′1 + q(x)y1)u

′ = f(x).

This may not look like a first order equation, but believe it or not, it is! To see this just let v = u′, then
v′ = u′′ and:

(p(x)y1)v
′ + (2p(x)y′1 + q(x)y1)v = f(x),

which is a first order linear differential equation in v. So by solving for v, we get u′ which we can integrate to
find u, and thus y.

Remark 2.26. It is not necessary to make the substitution v = u′, I did it merely to illustrate a point. However,
it is not incorrect to do it either. I will use the substitution in this section to make the examples look simpler.

Example 2.27. Find the general solution of

t2y′′ − 4ty′ + 6y = t7, t > 0

given that y1 = t2.

Solution. Set y = uy1 = ut2. Then y′ = u′t2 + 2ut and y′′ = u′′t2 + 4u′t+ 2u. Plug these into the equation to
get:

t2(u′′t2 + 4u′t+ 2u)− 4t(u′t2 + 2ut) + 6(ut2) = t4u′′ = t7,

which gives:
u′′ = t3.

There is no need to make the change of variable v = u′ here, so:

u′ =

∫
t3 dt =

1

4
t4 + c2

and

u =

∫
1

4
t4 + c2 dt =

1

20
t5 + c2t+ c1.

Thus our general solution is:

yG = uy1 =

(
1

20
t5 + c2t+ c1

)
t2 = c1t

2 + c2t
3 +

1

20
t7.
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�

If the differential equation you are given is second order homogeneous, and you only have one of the
homogeneous solutions, you can actually use the method of reduction of order to find the other homogeneous
solution! This is a particularly useful fact, especially when the equation you have is difficult. (This is actually
how we found the second solution to the constant coefficient homogeneous equation when we have repeated
roots!) Here is an example:

Example 2.28. Find the general solution to

xy′′ − (4x+ 1)y′ + (4x+ 2)y = 0, x > 0

given that y1 = e2x is a solution.

Solution. As usual let y = uy1 = ue2x. Then y′ = u′e2x + 2ue2x and y′′ = u′′e2x + 4u′e2x + 4ue2x. Plug these
in:

x(u′′e2x+4u′e2x+4ue2x)−(4x+1)(u′e2x+2ue2x)+(4x+2)ue2x = xe2xu′′+(4x−(4x+1))e2xu′ = xe2xu′′−e2xu′ = 0.

Let v = u′ and divide by xe2x, then

v′ − 1

x
v = 0

which is separable into:
v′

v
=

1

x

thus integrating both sides gives:
ln |v| = lnx+ c2

or
v = c2x

which makes

u =

∫
v dx = c2x

2 + c1

so that
yG = uy1 = c1e

2x + c2x
2e2x.

�

Exercises

Find the general solution given one of the homogeneous solutions. If an initial value is given, solve the IVP.

1. x2y′′ + xy′ − y =
4

x2
; y1 = x

2. x2y′′ − xy′ + y = x; y1 = x

3. y′′ + 4xy′ + (4x2 + 2)y = 8e−x(x+2); y1 = e−x
2

4. x2y′′ + 2x(x− 1)y′ + (x2 − 2x+ 2)y = x3e2x; y1 = xe−x

5. x2y′′ + 2xy′ − 2y = x2; y(1) =
5

4
, y′(1) =

3

2
; y1 = x
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6. (3x− 1)y′′ − (3x+ 2)y′ − (6x− 8)y = 0; y(0) = 2, y′(0) = 3; y1 = e2x

7. t2y′′ + 2ty′ − 2y = 0; y1 = t

8. 4xy′′ + 2y′ + y = 0; y1 = sin
√
x

9. (x2 − 2x)y′′ + (2− x2)y′ + (2x− 2)y = 0; y1 = ex

10. 4x2(sinx)y′′ − 4x(x cosx+ sinx)y′ + (2x cosx+ 3 sinx)y = 0; y1 = x
1
2

11. t2y′′ + 3ty′ + y = 0; y1 = t−1

12. (x− 1)y′′ − xy′ + y = 0; y1 = ex

Challenge Problems:

(13) Suppose that q(x) and r(x) are continuous on (a, b). Let y1 be a solution of

y′′ + q(x)y′ + r(x)y = 0

that has no zeros on (a, b), and let x0 be in (a, b). Use reduction of order to show that y1 and

y2 = y1

∫ x

x0

1

y21
e
−

∫ t
x0
q(s) ds

dt

form a fundamental set of solutions for y′′ + q(x)y′ + r(x)y = 0 on (a, b).

(14) Recall the Riccati equation
y′ = p(x)y2 + q(x)y + r(x).

Assume that q and r are continuous and p is differentiable.

(a) Show that y is a solution of the Riccati equation if and only if y = − z
′

pz
, where

z′′ −
[
q(x) +

p′(x)

p(x)

]
z′ + p(x)r(x)z = 0.

(b) Show that the general solution of the Riccati equation is

y = − c1z
′
1 + c2z

′
2

p(c1z1 + c2z2)

where {z1, z2} is a fundamental set of solutions to the differential equation for z and c1 and c2 are
arbitrary constants.

(15) The differential equation
xy′′ − (x+N)y′ +Ny = 0,

where N is a nonnegative integer, has an exponential solution and a polynomial solution.

(a) Verify that one solution is y1 = ex.
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(b) Show that a second solution has the form y2 = cex
∫
xNe−x dx. Calculate y2 for N = 1 and N = 2;

convince yourself that, with c = − 1

N !
,

y2 = 1 +
x

1!
+
x2

2!
+
x3

3!
+ · · ·+ xN

N !
.

(If you have taken a calculus course in which Taylor series were covered, you might recognize this
as the first N + 1 terms of the Maclauren series for ex (that is, for y1)!)

(16) The differential equation
y′′ + δ(xy′ + y) = 0

arises in the study of the turbulent flow of a uniform stream past a circular sylinder. Verify that

y1 = e−
δx2

2 is one solution, and then find the general solution in the form of an integral.
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2.5 Cauchy-Euler Equations

In this section we will study a special class of second order homogeneous linear differential equations called
Cauchy-Euler equations.

Definition 2.29 (Cauchy-Euler Equation). A second order differential equation is said to be Cauchy-Euler
if it is of the form

ax2y′′ + bxy′ + cy = 0, (2.5)

where a 6= 0.

This equation actually has what it called a singular point at x = 0, which will be dealt with in Chapter
6. In order to avoid any complications the singular point may create, in this section, we restrict ourselves to
x > 0.

2.5.1 Indicial Equation

Just as in Section 2.1, there is a nice and easy way to solve Cauchy-Euler equations. Notice that with
each derivative in the equation, you gain a power of x. Thus a solution to this equation must lose a power of
x with each derivative. What function do you know of that does that? The answer is, of course, the simplest
function, y = xm! Observe:

y′ = mxm−1

and

y′′ = m(m− 1)xm−2

so plugging them in we get:

ax2(m(m− 1)xm−2) + bx(mxm−1) + cxm = am(m− 1)xm + bmxm + cxm = 0

and since x > 0 it is ok to divide by xm, giving us:

am(m− 1) + bm+ c = 0. (2.6)

Equation (2.6) is called the indicial equation for equation (2.5). Just as with any polynomial, this polynomial
can have three types of roots:

1. distinct real roots

2. repeated real roots

3. complex conjugate roots.

As in Section 2.1, let’s examine what solutions we get with each case.

2.5.2 Distinct Real Roots

Theorem 2.30 (Distinct Real Roots). Suppose that the indicial polynomial of ax2y′′+ bxy′+ cy = 0 has two
real distinct roots: m1 and m2. Then the general solution to ax2y′′ + bxy′ + cy = 0 is

yG = c1x
m1 + c2x

m2 .

Example 2.31. Solve the differential equation

x2y′′ − 6xy′ + 10y = 0.
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Solution. First let’s begin by finding the indicial equation:

m(m− 1)− 6m+ 10 = m2 − 7m+ 10 = (m− 2)(m− 5) = 0.

Since the roots of the indicial equation are 2 and 5, the solution to the differential equation is:

yG = c1x
2 + c2x

5.

�

2.5.3 Repeated Real Roots

Theorem 2.32 (repeated Real Roots). Suppose that the indicial polynomial of ax2y′′+ bxy′+ cy = 0 has one
repeated root: k. Then the general solution to ax2y′′ + bxy′ + cy = 0 is

yG = c1x
k + c2x

k lnx.

Proof. First note that if the indicial equation has a repeated root, then it has the form:

m(m− 1)− (2k − 1)m+ k2 = 0,

and so the differential equation looks like:

x2y′′ − (2k − 1)xy′ + k2y = 0.

Then this is just a routine application of reduction of order with y1 = xk.

Example 2.33. Find the general solution of

x2y′′ + 5xy′ + 4y = 0.

Solution. The indicial equation is

m(m− 1) + 5m+ 4 = m2 + 4m+ 4 = (m+ 2)2 = 0.

So the repeated root of the equation is m = −2, and so the general solution is

yG = c1x
−2 + c2x

−2 lnx.

�

2.5.4 Complex Roots

Theorem 2.34 (Complex Conjugate Roots). Suppose that the indicial polynomial of ax2y′′+bxy′+cy = 0 has
two complex conjugate roots: m1 = α+iβ and m2 = α−iβ. Then the general solution to ax2y′′+bxy′+cy = 0
is

yG = c1x
α cos(β lnx) + c2x

α sin(β lnx).

How did we arrive at y1 = xα cos(β lnx) and y2 = xα sin(β lnx)? In the following way:

A priori we have
y3 = xα+iβ

and
y4 = xα−iβ.
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Start by rewriting them in the following form:

y3 = xαeiβ lnx

and
y4 = xαe−iβ lnx.

This may indeed seem strange, but by applying Euler’s formula we have:

y3 = xα(cos(β lnx) + i sin(β lnx))

and
y4 = xα(cos(β lnx)− i sin(β lnx)).

Now taking the following complex linear combinations, we arrive at the y1 and y2 above:

y1 =
1

2
(y3 + y4)

and

y2 =
1

2i
(y3 − y4).

Example 2.35. Solve the equation
2x2y′′ − 2xy′ + 20 = 0.

Solution. The indicial equation is

2m(m− 1)− 2m+ 20 = 2m2 − 4m+ 20 = 0,

which has roots:

m =
4±
√

16− 160

4
=

4±
√
−144

4
=

4± 12i

4
= 1± 3i.

So the general solution is
yG = c1x cos(3 lnx) + c2x sin(3 lnx).

�

Exercises

Solve the given equation, if there is an initial value, find the solution of the IVP. Assume that x > 0 in all of
the problems.

1. x2y′′ − 2y = 0

2. x2y′′ + 4xy′ + 2y = 0; y(1) = 1, y′(1) = 2

3. x2y′′ + 3xy′ − 3y = 0

4. x2y′′ − 3xy′ + 4y = 0; y(1) = 2, y′(1) = 1

5. 3xy′′ + 2y′ = 0

6. 4x2y′′ + y = 0
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7. x2y′′ + xy′ + 4y = 0; y(1) = 1, y′(1) = 4

8. x2y′′ − 5xy′ + 13y = 0

Challenge Problems:

(9) Show that the change of variable t = ax+ b transforms the equation

b0(ax+ b)2y′′ + b1(ax+ b)y′ + b2y = 0

into a Cauchy-Euler equation.

(10) Use the result of Exercise 9 to find the general solution of the given equation:

(a) (x− 3)2y′′ + 3(x− 3)y′ + y = 0, x > 3

(b) (2x+ 1)2y′′ + 4(2x+ 1)y′ − 24y = 0, x > −1

2
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2.6 The Method of Undetermined Coefficients

The method of undetermined coefficients is useful for finding solution of the equation:

ay′′ + by′ + cy = f(x) (2.7)

where f(x) is a sum of functions of the form Pn(x)eαx sinβx or Qm(x)eαx cosβx, where α and β can be any
real number (β ≥ 0), n and m are integers greater than or equal to zero, and Pn and Qm are polynomials of
degree n and m respectively.

Rather than try to derive all of the choices, here we will just exemplify and collect the different cases we
can solve:

To sum up the method of undetermined coefficients, consider the following table for the equation ay′′ +
by′ + cy = f(x):

If f(x) = Guess yp =

(1) Pn(x) xs(Anx
n +An−1x

n−1 + · · ·+A1x+A0)

(2) Pn(x)eαx xs(Anx
n +An−1x

n−1 + · · ·+A1x+A0)e
αx

(3) Pn(x)eαx sinβx xseαx[(Akx
k +Ak−1x

k−1 + · · ·+A1x+A0) cosβx
and/or Qm(x)eαx cosβx +(Bkx

k +Bk−1x
k−1 + · · ·+B1x+B0) sinβx]

where k = max{n,m} and s is determined as follows:

1. s equals the number of times 0 is a root of the characteristic equation.

2. s equals the number of times α is a root of the characteristic equation.

3. s = 1 if α+ iβ is a root of the characteristic equation and 0 otherwise.

(Notice that s = 0, 1, or 2.)

Using the table above combined with the principle of superposition, we can solve any of the equations
mentioned at the beginning of this section. The general method is to guess the appropriate, plug it in, and
equate coefficients with the nonhomogeneous part, f(x).

The motivation behind each of the choices is as follows:

1. Since f is just a polynomial and the equation is just a linear combination of derivatives of y, the solution
will be a polynomial. When we guess a particular solution, it must be a polynomial of the same degree
as f , and we must have a term of every power less than that in order to compensate for the fact that
differentiation lowers the degree of a polynomial by one.

2. The same as one, except that now we must include an exponential term since that is multiplied onto the
polynomial. We don’t have to add anything extra (unless we need s = 1, 2) since when we differentiate
eαx all that happens is it gets multiplied by α.

3. If either a sine term or a cosine term show up in f (one, the other, or both), we need to include both
sin and cos in our guess since their derivates alternate between each other.

The motivation for the xs is to ensure that we can equate coefficients properly.

We have already covered item (1) in the table above in Section 2.3, so now let’s see an example of the
other two. Keep in mind that a polynomial of degree 0 is just a constant. First an example of item (2).
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Example 2.36. Solve the differential equation

y′′ − 4y′ + 3y = e3x(x+ 1).

Solution. A fundamental set of solutions for the associated homogeneous equation is {e3x, ex}, so by the table
above we have that s = 1 and we should guess that yp = x(Ax + B)e3x = (Ax2 + Bx)e3x. Now we need to
take the first and second derivatives of yp:

y′p = (2Ax+B)e3x + (3Ax2 + 3Bx)e3x

= (3Ax2 + (2A+ 3B)x+B)e3x

y′′p = (6Ax+ (2A+ 3B))e3x + (9Ax2 + (6A+ 9B)x+ 3B)e3x

= (9Ax2 + (12A+ 3B)x+ (2A+ 3B))e3x

Plug these into the differential equation:

y′′p − 4y′p + 3yp = (9Ax2 + (12A+ 3B)x+ (2A+ 3B))e3x − 4((3Ax2 + (2A+ 3B)x+B)e3x) + 3((Ax2 +Bx)e3x)

= (9Ax2 + 12Ax+ 9Bx+ 2A+ 6B − 12Ax2 − 8Ax− 12Bx− 4B + 3Ax2 + 3Bx)e3x

= (4Ax+ (2A+ 2B))e3x

= (x+ 1)e3x

Equating coefficients yields the system of equations:{
4A = 1
2A + 2B = 1

which has the solution A =
1

4
and B =

1

4
so that

yp =
1

4
x2e3x +

1

4
xe3x.

Thus our general solution is:

yG = c1e
x + c2e

3x +
1

4
x2e3x +

1

4
xe3x.

�

Maybe you noticed in this example, but whenever we have an exponential term in f , it makes differentiation
quite annoying, and it ends up getting canceled out before we solve for the unknown coefficients. One way
to make this method more efficient is to first make the guess that yp = upe

αx, which is what it will look like
anyway. Plug this into the differential equation to get rid of the exponential term, then just solve the equation
to find up. Let’s see this method in an example of (3) in the chart above:

Example 2.37. Solve the differential equation

y′′ − 2y′ + 5y = e−x cosx.

Solution. A fundamental set of solutions to this differential equation is: {ex cos 2x, ex sin 2x}, so s = 0 and we
should, by the table, guess that yp = (A cosx+B sinx)e−x, but let’s instead first try yp = ue−x. So start by
differentiating yp:

y′p = u′e−x − ue−x

and

y′′p = u′′e−x − 2u′e−x + ue−x.
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Plugging this into the equation we get:

y′′p − 2y′p + 5yp = u′′e−x − 2u′e−x + ue−x − 2(u′e−x − ue−x) + 5ue−x

= (u′′ − 4u′ + 8u)e−x

= e−x cosx

Which reduces to the equation

u′′ − 4u′ + 8u = cosx

Since cosx and sinx are not solutions to the corresponding homogeneous differential equation for u, we can
use the chart above to guess that

up = A cosx+B sinx

and plug it in:

−A cosx−B sinx− 4(−A sinx+B cosx) + 8(A cosx+B sinx) = (7A− 4B) cosx+ (4A+ 7B) sinx = cosx.

This gives us the system of equations {
7A − 4B = 1
4A + 7B = 0

which has the solution A =
7

65
and B = − 4

65
. Thus our particular solution should be yp = upe

−x =

7

65
e−x cosx − 4

65
e−x sinx, which it indeed is (you should check this to convince yourself). Therefore our

general solution is:

yG = c1e
x cos 2x+ c2e

x sin 2x+
7

65
e−x cosx− 4

65
e−x sinx.

�

Exercises

Find the general solution to the given differential equation. If there is an initial value, find the solution
to the IVP.

1. y′′ − 2y′ − 3y = ex(3x− 8)

2. y′′ + 4y = e−x(5x2 − 4x+ 7)

3. y′′ − 4y′ − 5y = −6xe−x

4. y′′ − 4y′ − 5y = 9e2x(x+ 1); y(0) = 0, y′(0) = −10

5. y′′ − 3y′ − 10y = 7e−2x; y(0) = 1, y′(0) = −17

6. y′′ + y′ + y = xex + e−x(2x+ 10

7. y′′ − 8y′ + 16y = 6xe4x + 16x2 + 16x+ 2

8. y′′ + 3y′ + 2y = 7 cosx− sinx
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9. y′′ + y = (8x− 4) cosx+ (−4x+ 8) sinx

10. y′′ + 2y′ + y = ex(6 cosx+ 17 sinx)

11. y′′ + 3y′ − 2y = e−2x[(20x+ 4) cos 3x+ (−32x+ 26) sin 3x]

12. y′′ + 9y = sin 3x+ cos 2x

13. y′′ + 6y′ + 10y = −40ex sinx; y(0) = 2, y′(0) = −3

14. y′′ − 2y′ + 2y = 4xex cosx+ xe−x + x2 + 1
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2.7 Variation of Parameters

In this section we will study the powerful method of Variation of Parameters for finding general solutions
to nonhomogeneous equations. To use this method, we need to know a fundamental set of solutions for our
equation. Why would we want to do this when it seems that reduction of order is better since it only requires
us to know one of the homogeneous solutions? One reason is that it is usually much simpler to do than
reduction of order. Another is it generalizes very easily to higher order linear differential equations, unlike
reduction of order.

Suppose that we have the differential equation

p(x)y′′ + q(x)y′ + r(x)y = f(x),

and that we know the two homogeneous solutions y1 and y2. With this method we will search for solutions
of the form y = u1y1 + u2y2. Let’s differentiate this

y′ = u′1y1 + u1y
′
1 + u′2y2 + u2y

′
2.

Since we have two unknown functions (u1 and u2) we need two equations to solve for both of them, so we
create the first equation by demanding that

u′1y1 + u′2y2 = 0.

This is good because, not only does it give us one constraint on u1 and u2, it also simplifies y′:

y′ = u1y
′
1 + u2y

′
2.

Now take the derivative again:
y′′ = u′1y

′
1 + u1y

′′
1 + u′2y

′
2 + u2y

′′
2

and plug y, y′, and y′′ into the differential equation and group by derivatives of u1 and u2 to get:

p(x)y′′ + q(x)y′ + r(x)y = p(x)(u′1y
′
1 + u1y

′′
1 + u′2y

′
2 + u2y

′′
2) + q(x)(u1y

′
1 + u2y

′
2) + r(x)(u1y1 + u2y2)

= p(x)u′1y
′
1 + p(x)u′2y

′
2 + (p(x)y′′1 + q(x)y′1 + r(x)y1)u1 + (p(x)y′′2 + q(x)y′2 + r(x)y2)u2

= p(x)u′1y
′
1 + p(x)u′2y

′
2 + 0u1 + 0u2

= p(x)u′1y
′
1 + p(x)u′2y

′
2 = f(x)

So the equation reduces to:

u′1y
′
1 + u′2y

′
2 =

f(x)

p(x)
.

This equation gives us another restriction on u1 and u2! So now we have a system of equations to determine
u1 and u2 with:  u′1y1 + u′2y2 = 0

u′1y
′
1 + u′2y

′
2 =

f(x)

p(x)

(2.8)

Using this system of equations, we can solve for u1 and u2 (leaving the integration constants in!) and get
the general solution to our differential equation:

yG = u1y1 + u2y2.

There is one more thing that I must convince you of, that is that we can always solve for u1 and u2 in this
system of equations. To see this, start by multiplying the first equation by y′2 and the second equation by y2: u′1y1y

′
2 + u′2y2y

′
2 = 0

u′1y2y
′
1 + u′2y2y

′
2 =

f(x)y2
p(x)
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now subtract the second equation from the first and get:

u′1(y1y
′
2 − y2y′1) = −f(x)y2

p(x)

but notice that y1y
′
2 − y2y′1 = W (x; y1, y2), thus:

u′1 = − f(x)y2
p(x)W (x; y1, y2)

so that

u1 = −
∫

f(x)y2
p(x)W (x; y1, y2)

dx.

Similarly you can show that

u′2 =
f(x)y1

p(x)W (x; y1, y2)

so that

u2 =

∫
f(x)y1

p(x)W (x; y1, y2)
dx.

Remember to keep the constants of integration in these two integrals (and to call them different names,
preferably c1 for u1 and c2 for u2) so that when we write y = u1y1 + u2y2 we get the general solution!

It is not recommended that you memorize the equations for u1 and u2, as they were derived merely to show
that you can always find them. However, what you should do when you want to use variation of parameters
is the following:

1. Find y1 and y2 for you differential equation.

2. Write down the system (2.8) with your y1 and y2 plugged in.

3. Solve for u′1 or u′2, and use whichever you found first to find the second.

4. Integrate u′1 and u′2 to find u1 and u2, keeping the integration constants if you are trying to find the
general solution.

5. Write down and simplify the equation yG = u1y1 + u2y2 (or yp = u1y1 + u2y2 if you don’t keep the
constants of integration).

Example 2.38. Solve the differential equation

y′′ + 4y = sin 2x sec2 2x.

Solution. A fundamental set of solutions to this problem is {cos 2x, sin 2x}, so now let’s write down the system
of equations: {

u′1 cos 2x + u′2 sin 2x = 0
−2u′1 sin 2x + 2u′2 cos 2x = sin 2x sec2 2x

Multiply the first equation by 2 sin 2x and the second by cos 2x, then add them together to get:

2u′2 = sin 2x sec 2x = tan 2x

integrating both sides and dividing by 2 we get:

u2 = −1

4
ln | cos 2x|+ c2.
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Plug the equation for 2u′2 into the second equation in the system above to get:

−2u′1 sin 2x+ sin 2x = sin 2x sec2 2x.

Dividing by sin 2x and isolating u′1 we get:

u′1 =
1

2
− 1

2
sec2 2x

and integrating we get:

u1 =
1

2
x− 1

4
tan 2x+ c1.

Thus our general solution is

yG = u1y1 + u2y2 =

(
1

2
x− 1

4
tan 2x+ c1

)
cos 2x+

(
−1

4
ln | cos 2x|+ c2

)
sin 2x

=
1

2
x cos 2x− 1

4
sin 2x+ c1 cos 2x− 1

4
sin 2x ln | cos 2x|+ c2 sin 2x,

and after some simplification:

yG = c1 cos 2x+ c2 sin 2x− 1

4
sin 2x ln | cos 2x|+ 1

2
x cos 2x.

�

Exercises

Use variation of parameters to find the general solution given a fundamental set of solutions to the
differential equation.

1. xy′′ + (2− 2x)y′ + (x− 2)y = e2x; {ex, x−1ex}

2. (sinx)y′′ + (2 sinx− cosx)y′ + (sinx− cosx)y = e−x; {e−x, e−x cosx}

3. x2y′′ + xy′ − y = 2x2 + 2;

{
x,

1

x

}

4. x2y′′ − xy′ − 3y = x
3
2 ;

{
1

x
, x3
}

Use variation of parameters to find the general solution.

(5) y′′ + 9y = tan 3x

(6) y′′ − 3y′ + 2y =
4

1 + e−x

(7) y′′ − 2y′ + 2y = 2ex secx

(8) y′′ − 2y′ + y = 14x
3
2 ex

(9) y′′ − y =
2

ex + 1
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(10) y′′ − 2y′ + y =
1

x
ex

(11) y′′ − 2y′ + y = 4e−x lnx

(12) y′′ + y = secx tanx

(13) x2y′′ − 2xy′ + 2y = x3ex
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2.8 Some Non-Linear Second Order Equations

Recall that in its most general form, a second order differential equation is of the form:

F (x, y, y′, y′′) = 0.

In general, non-linear differential equations can become quite nasty very fast. We usually do not have a nice
set of fundamental set of solutions; in fact, we usually have a multitude of solutions that seem to have no
relation whatsoever. These equations may become easier under certain circumstances. In this section we will
study the two cases in which y is not an input of F and when x is not an input of F . In these two cases, we
can reduce solving the second order equation down to solving two first order differential equations.

2.8.1 Missing Dependent Variable

Suppose we had a differential equation of the form:

G(x, y′, y′′) = 0.

In this case, the dependent variable y is not an input of G. (Recall that the method of reduction of order
yields an equation of this type). Using the substitution u = y′, this equation becomes:

G(x, u, u′) = 0

which is a first order differential equation. If we can solve this equation for u (there is no guarantee that we
can!), then to get y we simply integrate u, since y′ = u.

Example 2.39. Solve the equation

x
d2y

dx2
= 2

[(
dy

dx

)2

− dy

dx

]
.

Solution. First let’s start by letting v = y′, then the equation becomes:

xv′ = 2(v2 − v) = 2v(v − 1)

suggesting that v1 = 0 and v2 = 1 are constant solutions. Thus since v = y′ we have that y1 =
∫
v1 dx = c

and y2
∫
v2 dx = x+ c are solutions. Now the differential equation for v is separable, so separate it into:

1

v(v − 1)
dv =

2

x
dx

using partial fractions to rewrite the equation we get:(
1

v − 1
− 1

v

)
dv =

2

x
dx

now integrate:
ln |v − 1| − ln |v| = lnx2 + c

and solve for v:

ln
∣∣v−1
v

∣∣ = lnx2 + c

=⇒ v−1
v = cx2

=⇒ v = 1
1−cx2

Then in order to integrate v to solve for y, we need to consider the different signs of c:
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c = 0) If c = 0 then v = 1 which is handled above.

c > 0) If c > 0 let c = a2, then

v3 =
1

1− (ax)2
=

1

(1 + ax)(1− ax)
=

1
2

1 + ax
+

1
2

1− ax

which implies that

y3 =
1

2

1

a
ln |1 + ax|+ 1

2

1

(−a)
ln |1− ax|+ k =

1

2a
ln

∣∣∣∣1 + ax

1− ax

∣∣∣∣+ k.

c < 0) If c < 0 then let c = −b2, then

v4 =
1

1 + (bx)2

so that when we integrate we get

y4 =
1

b
arctan bx+ k.

Thus the solutions to the equation are, where c is an arbitrary constant, and a is any nonzero number:

y1 = c

y2 = x+ c

y3 =
1

2a
ln

∣∣∣∣1 + ax

1− ax

∣∣∣∣+ c

y4 =
1

a
arctan ax+ c

(Note that the a and c here are not the same as above.)

�

2.8.2 Missing Independent Variable

Now suppose we had a differential equation of the form:

H(y, y′, y′′) = 0.

Here the independent variable x is missing. Suppose that y is a solution to this differential equation. Then

let v =
dy

dx
. On an interval where y is a strictly monotone function, we can regard x as a function of y (since

the function is invertible on this interval) and we can write (by the chain rule):

d2y

dx2
=
dv

dx
=
dv

dy

dy

dx
= v

dv

dy

which leads to

H

(
y, v, v

dv

dy

)
= 0

which is a first order differenial equation. Upon finding v, we can then integrate it to find y.

Example 2.40. Solve the equation

y
d2y

dx2
=

(
dy

dx

)2

+ 2
dy

dx
.
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Solution. Start by making the substitution v =
dy

dx
. Then

dv

dx
= v

dv

dy
. Substitute these into the equation and

get:

yv
dv

dy
= v2 + 2v = v(v + 2)

from which it is evident that v1 = 0 and v2 = −2 are solutions so that y1 = c and y2 = −2x+ c are solutions
to the original equation. The differential equation for v is separable, to see this first divide by v (we don’t
have to worry about whether or not v = 0 here since we have already established that v = 0 is a solution (see
v1 above)):

y
dv

dy
= (v + 2)

which separates into
1

v + 2
dv =

1

y
dy.

Integrating both sides, we arrive at:
ln |v + 2| = ln |y|+ c

which gives
v = cy − 2.

If c = 0 above we have no worries since then we would have v = −2 which we already handled above. So
assume c 6= 0, then the equation can be written in the form, replacing v with dy

dx :

dy

dx
− cy = −2

which is a first order linear equation for y. Solving this we get the solution

y3 =
1

c
(kecx + 2) .

So collecting all of the solutions together we have:

y1 = c

y2 = −2x+ c

y3 =
1

c
(kecx + 2)

where c and k are arbitrary constants (in y3, c 6= 0).

�

Exercises

Solve the differential equation:

1. t
d2x

dt2
= 2

dx

dt
+ 2

2. 2x
dy

dx

d2y

dx2
=

(
dy

dx

)2

+ 1

3. xe
dx
dt
d2x

dt2
= e

dx
dt − 1
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4. y
d2y

dx2
=

(
dy

dx

)2

5.
d2y

dx2
+ e−y

dy

dx

6. (x2 + 1)
d2y

dx2
= 2x

(
dy

dx

)2

Challenge Problem:

(7) x
d3y

dx3
= 2

d2y

dx2



2.9. ADDITIONAL EXERCISES 107

2.9 Additional Exercises

Determine whether the given set of functions in linearly independent on (−∞,∞):

1. {sin 3x, cos 3x}

2. {3x, 4x}

3. {x2, x}

4. {x2, 5}

5. {e2x, e3x}

6. {3 cos 6x, 1 + cos 3x}

7. {3e2x, 5e2x}

Solve the given equation:

(8) y′′ − y = 0

(9) y′′ − 2y′ + y = 0

(10) y′′ + 2y′ + 2y = 0

(11) y′′ − 7y = 0

(12) y′′ + 6y′ + 9y = 0

(13) y′′ − 3y′ − 5y = 0

(14) x′′ − 20x′ + 64x = 0

(15) x′′ + x′ + 2x = 0

(16) u′′ − 36u = 0

(17)
d2Q

dt2
− 5

dQ

dt
+ 7Q = 0

(18) x′′ − 10x′ + 25x = 0

(19)
d2P

dt2
− 7

dP

dt
+ 9P = 0
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(20)
d2N

dx2
+ 5

dN

dx
+ 24N = 0

(21)
d2T

dθ2
+ 30

dT

dθ
+ 225T = 0

(22)
d2R

dθ2
+ 5

dR

dθ
= 0

(23) y′′ − 2y′ + y = x2 + 1

(24) y′′ − 2y′ + y = 3e2x

(25) y′′ − 2y′ + y = 4 cosx

(26) y′′ − 2y′ + y = 3ex

(27) y′′ − 2y′ + y = xex

(28) y′′ − 2y′ + y =
1

x5
ex

(29) y′′ + y = secx

(30) y′′ − y′ − 2y = e3x

(31) y′′ − 7y′ = −3

(32) y′′ +
1

x
y′ − 1

x2
y = lnx

(33) x2y′′ + 7xy′ + 9y = 0

(34) x2y′′ − 2y = x3e−x

(35) x2y′′ + xy′ + y = 0

(36) x2y′′ − 4xy′ − 6y = 0

(37) y′′ + y = tan t

(38) y′′ + 9y = 9 sec2 3t

(39) 4y′′ + y = 2 sec

(
t

2

)
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(40) t2y′′ − 2y = 3t2 − 1

(41) x2y′′ − 3xy + 4y = x2 lnx

Solve the given differential equation. You are given at least one of the homogeneous solutions.

(42) (1− x)y′′ + xy′ − y = 2(t− 1)2e−t; y1 = et

(43) x2y′′ + xy′ +
(
x2 − 1

4

)
= 3x

3
2 sinx; y1 = x−

1
2 sinx, y2 = x−

1
2 cosx

(44) y′′ − (1 + t)y′ + y = t2e2t; y1 = 1 + t, y2 = et

(45) t2y′′ − t(t+ 2)y′ + (t+ 2)y = 0; y1 = t

(46) xy′′ − y′ + 4x3y = 0; y1 = sinx2

(47) x2y′′ −
(
x− 3

16

)
y = 0; y1 = x

1
4 e2
√
x

Solve the given initial value problem.

(48) y′′ − y′ − 2y = e3x; y(0) = 1, y′(0) = 2

(49) y′′ − y′ − 2y = 0; y(0) = y′(0) = 2

(50) y′′ + 4y = sin2 2x; y(π) = y′(π) = 0

(51) y′′ + 3y′ + 2y = sin 2x+ cos 2x; y(0) = 0, y′(0) = 1
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Chapter 3

Higher-Order Differential Equations

3.1 General nth order Linear Differential Equations

Exercises
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3.2 The Method of Undetermined Coefficients

Exercises
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3.3 Variation of Parameters

Exercises
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3.4 Additional Exercises



Chapter 4

Some Applications of Differential Equations

4.1 Orthogonal Trajectories

In this section we will explore how to find functions orthogonal to a given family of functions.

Consider the equation

y = cx

where c is an arbitrary constant. This equation describes a family of lines through the origin. The slope of a
given member of the family is its derivative:

y′ = c.

If we solve for c in the original equation (which we can do since we picked a specific member of the family)
we get:

c =
y

x
.

With the exception of the origin, every point (x, y) in the plane has exactly one member of the family passing
though it. At the point (x, y) in the plane, the slope of the member of family member passing though it is
given by

y′ = c =
y

x
.

Suppose we wanted the equation of a graph passing though that point perpendicular to every member of the
family. How would we do this? Recall the definition of perpendicular slope from Algebra 1:

If m is our original slope, the perpendicular slope is given by m⊥ = − 1

m
.

We will do a similar thing to get an orthogonal function:
Since our original slope is:

y′ =
y

x

our perpendicular slope is:

y′ = −x
y

which is a separable equation that can be solved to get:

1

2
y2 = −1

2
x2 + k

which can be rewritten as:

x2 + y2 = k.

Thus the orthogonal family of functions are concentric circles of every radius centered at the origin!

115
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Exercises

Find the orthogonal trajectories of each given family. Also sketch several members of each family.

1. y = ex + c

2. y = cex

3. y = arctanx+ c

4. x2 +
1

4
y2 = c

5. x2 + (y − c)2 = c2

6. x2 − y2 = 2cx
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4.2 Mixing Problems

Suppose that we have a tank that initially has V0 liters of a well-mixed solution containing Q0 grams of

salt. Suppose that we pump in a salt solution of concentration qin
g

liter
at a rate of rin

liter

min
. Also suppose

that we let the (well-mixed) solution drain at a rate of rout
liter

min
. We would like to know the amount of salt

(in grams) in the tank at any time t. How would we do this? We, given the information above, know the rate
at which the amount of salt is changing with respect to time. If we let Q(t) be the the amount of salt in the
tank at time t, the equation that gives the rate of change of the amount of salt is:

Q′(t) = rinqin − routqout;Q(0) = Q0 (4.1)

where qout is the concentration of salt in the solution leaving the tank. So the only thing we are missing is
qout. This is given by taking the amount of salt in the tank at time t and dividing it by the volume of solution
in the tank at the same time, i.e.:

qout =
Q(t)

V (t)
,

where V (t) = V0 + (rin − rout)t is the volume of the tank at time t. Substituting this into (4.1) we get:

Q′ = rinqin − rout
Q(t)

V (t)
;Q(0) = Q0,

which is a linear IVP whose solution is the amount of salt in the tank at time t.

Let’s see an example of this.

Example 4.1. A tank originally contains 100 liters of fresh water (i.e. contains 0 grams of salt). Then water
containing 1

2 grams of salt per liter is pumped into the tank at a rate of 2 liters
minute , and the well-stirred mixture

leaves the tank at the same rate. Find the amount of salt in the tank at time t after the process started.

Solution. Suppose that Q(t) is the amount of salt in the tank at time t. Let’s first begin by finding rin, rout,
qin, Q0, V (t), and qout:

rin = 2

rout = 2

qin =
1

2
Q0 = 0

V (t) = 100 + (2− 2)t = 100

qout =
Q(t)

V (t)
=

1

100
Q.

Now let’s set up the equation for Q′:

Q′ = (2)

(
1

2

)
− (2)

(
1

100
Q

)
;Q(0) = 0.

Simplifying and rewriting this, we get:

Q′ +
1

50
Q = 1;Q(0) = 0.

The general solution to this equation is:

Q(t) = ce−
1
50
t + 50
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and using the initial value we get c = −50 so that our solution is:

Q(t) = −50e−
1
50
t + 50.

This function gives the amount of salt in the tank at time t. Notice that if we take the limit as t → ∞ we
get that there is 50 grams of salt in the tank. This is consistent with the fact that the solution that is being
poured in has a salt concentration of 50% and that eventually an equilibrium point will be reached.

�

Exercises

1. A tank initially contains 120 liters of pure water. A mixture containing a concentration of γ
g

liter
of

salt enters the tank at a rate of 3
liters

min
, and the well-stirred mixture leaves the tank at the same rate.

Find an expression in terms of γ for the amount of salt in the tank at any time t. Also find the limiting
amount of salt in the tank as t→∞.

2. A tank with a capacity of 500 liters originally contains 200 liters of water with 100 kilograms of salt in

the solution. Water containing 1 kg of salt per liter is entering at a rate of 3
liter

min
, and the mixture is

allowed to flow out of the tank at a rate of 2
liter

min
. Find the amount of salt in the tank at any time prior

to the instant when the solution begins to overflow. Find the concentration (in kilograms per liter) of
salt in the tank at the instant it starts to overflow.

3. A tank initially holds 25 liters of water. Alcohol with a concentration of 5 gLenters at the rate of 2
liter

min

and the mixture leaves at the rate of 1
liter

min
. What will be the concentration of alcohol when 50 liters

of fluid is in the tank?

4. A tank initially contains 50 liters of a solution that holds 30 grams of a chemical. Water runs into the

tank at the rate of 3
liter

min
and the mixture runs out at the rate of 2

liter

min
. After how long will there be

25 grams of the chemical in the tank?
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4.3 Modeling Growth and Decay

Exercises
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4.4 Topics in Mechanics

4.4.1 Some Useful Stuff

Amplitude-Phase Form

Suppose we had

y = c1 cosωt+ c2 sinωt

as a solution to a differential equation. Notice that this describes a system that is in a simple harmonic
motion, or oscillation. Now let’s define a few things:

R =
√
c21 + c22,

c1 = R cosϕ,

and

c2 = R sinϕ,

where ϕ ∈ [−π, π).

Then plugging these into the equation for y and using the identity cos(a− b) = cos a cos b+ sin a sin b we
get:

y = R(cosϕ cosωt+ sinϕ cosωt) = R cos(ωt− ϕ).

The equation

y = R cos(ωt− ϕ) (4.2)

is called the Amplitude-Phase Form of y. In the equation, R is the amplitude, ϕ is called the phase angle
(measure in radians), and ω is the frequency.

Polar Coordinates

In the plane R2 we can define a new coordinate system that describes a point in the plane by its distance
from the origin and the angle the line connecting the point to the origin makes with the positive x-axis. These
coordinates are called polar coordinates and are written (r, θ), where r and θ are given by:

r =
√
x2 + y2

and

θ = arctan
y

x
,

where x and y are the standard Cartesian coordinates of the point (r, θ). To go from polar to Cartesian, use
the equations

x = r cos θ

and

y = r sin θ.
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4.4.2 Simple Spring Motion

In this section we will ignore air resistance and all of the other usual things to ignore. Suppose that we
have a spring hanging from a support (see Figure 4.1 below) with spring constant k. Let L be the equilibrium
length of the spring with no weight attached (Figure 4.1.a). Recall Hooke’s Law which says that the force
required to stretch a spring with spring constant k a displacement of x is

F = kx.

Now suppose that we attach a weight of mass m to the free end of the spring. Then the downward force of
the mass is mg where g is the gravitational acceleration (which we will approximate as g = 9.8m

s2
). Thus by

Hooke’s law and Newton’s third law we have that:

mg = kd

where d is the distance that the weight has stretched the spring from its original rest length (Figure 4.1.b).
Now suppose that we stretch the spring-mass system a length of x from its equilibrium position, then release
it (Figure 4.1.c). We would like to model this motion.

Figure 4.1: (a) A spring in at its natural length, (b) A spring with a weight of mass m attached, (c) A spring
with a weight of mass m attached and displaced by a length x

By Newton’s second law, differential equation that models the motion of the spring is given by:

my′′ = mg − k(y + d)

where y, the vertical displacement of the mass, is a function of time. But since mg = kd we have

my′′ + ky = 0; y(0) = x, y′(0) = 0. (4.3)

Note that if we give the mass an initial velocity of v0 when released, the second initial value changes to
y′(0) = v0.

Example 4.2. An object of mass 1
98kg stretches a spring 5cm in equilibrium. Determine the equation of

motion of the spring if the spring is stretched 10cm from equilibrium then released.
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Solution. First we need to use Hooke’s law to find the spring constant. Note that m = 1
98kg and d = 5cm =

.05m and set up the equation:

mg = kd

then plug in what we know: (
1

98
kg

)(
9.8

m

s2

)
= k(.05m)

which simplifies to:
1

10
N = k(.05m)

and so:

k = 2
kg ·m
s2

.

Now let’s set up the differential equation (4.3) for the motion of the spring-mass system (note that the initial
displacement is x = −10cm = −0.1m):

1

98
y′′ + 2y = 0; y(0) = −0.1, y′(0) = 0.

First we need to solve the equation:

y′′ + 196y = 0.

The solution to this equation is:

y = c1 sin 14t+ c2 cos 14t.

Now the initial values give:

y = − 1

10
cos 14t

which is the equation of motion of the spring-mass system.

�

4.4.3 Motion Under a Central Force

Definition 4.3 (Central Force). A central force is a force whose magnitude at any point P not the origin
depends only on the distance from P to the origin and whose direction at P is parallel to the line connecting
P and the origin.

An example of a central force is gravitation, and another is the electric force emitted by a point charge.

Assume that we are working with motion of an object in 3-dimensional space which is acted upon by a
central force located at the origin. Notice that if the initial position vector and initial velocity vector of the
object in consideration are parallel, then the motion of the particle is along the line connecting the initial
position to the origin. Since this case is relatively uninteresting, we will consider the case in which they are
not parallel. These two vectors determine a plane, and it is in this plane that the motion of the particle is
taking place in. In this section we will derive how to find the path that the object takes through the plane,
also known as the orbit of the object.

We will use polar coordinates to represent a central force. The central force can be written as:

F(r, θ) = f(r)(cos θ, sin θ) = (f(r) cos θ, f(r) sin θ).
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Assume that f is a continuous function for all r > 0. Let’s confirm that this is in fact a central force. First
we need to check that the magnitude depends only on r, which is the distance from the object to the origin:

‖F(r, θ)‖ =
√

(f(r) cos θ)2 + (f(r) sin θ)2 =

√
(f(r))2[cos2 θ + sin2 θ] = |f(r)| · 1 = |f(r)|

which only depends on r. Now the direction of this force is from the origin to the point (r, θ) if f(r) > 0 and
vice versa if f(r) < 0. Let’s suppose that our object has mass m.

Recall Newton’s second law of motion
F = ma.

Since our particle is in motion we can write r and θ as functions of time, i.e.

r = r(t) and θ = θ(t),

and by using Newton’s second law we have

F(r, θ) = m(r cos θ, r sin θ)′′ = (m(r cos θ)′′,m(r sin θ)′′).

Exercises

1. An object stretches a spring 4cm in equilibrium. Find its displacement for t > 0 if it is initially displaced
36 cm above equilibrium and given a downward velocity of 25 cms .

2. A spring with natural length .5m has length 50.5cm with a mass of 2g suspended form it. The mass
is initially displaced 1.5cm below equilibrium and released with zero velocity. Find its displacement for
t > 0.

3. An object stretches a spring 5cm in equilibrium. It is initially displaced 10cm above equilibrium and
given an upward velocity of .25ms . Find and graph is displacement for t > 0.

4. A 10kg mass stretches a spring 70cm in equilibrium. Suppose that a 2kg mass is attached to the spring,
initially displaced 25cm below equilibrium, and given an upward velocity of 2ms . Find its displacement
for t > 0.
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4.5 Topics in Electricity and Magnetism

4.5.1 The RLC Circuit

In this section we shall consider the RLC circuit which consists of a Resistor, Induction coil, and Capacitor
connected in series as shown in Figure 4.2.

Figure 4.2: A simple RLC circuit. L is the induction coil, R is the resistor, C is capacitor, and E is a battery
or generator.

Once the switch in the circuit is closed at time t = 0, current will begin to flow through the circuit. We
will denote the value of the current at time t by I(t). We will take current flowing in the direction of the
arrow to be positive valued. Current begins to flow as a result of differences in electric potential created by
the battery (or generator). Let’s say that the battery (or generator) creates a potential difference of E(t)
which we will call the applied voltage. We will use the following convention for units:

amperes for the current I
volts for the voltage

ohms for the resistance R
henrys for the inductance L
farads for the capacitance C

and coulombs for the charge on the capacitor

Now we need to define the term voltage drop:

Definition 4.4 (Voltage Drop). The voltage drop across an element of a circuit is given by:

Resistor) RI

Inductor) L
dI

dt
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Capacitor)
Q

C
where Q is the charge on the capacitor.

We have the following relation between current and charge since current is defined to be the change in
charge over time:

I =
dQ

dt
and

Q =

∫ t

0
I(s)ds+Q0

where Q0 is the initial charge on the capacitor. Recall one of Kirchhoff’s laws which says that the sum of the
voltage drops around a circuit must be equal to the applied voltage. Thus by Kirchhoff’s law we have that:

L
dI

dt
+RI +

1

C
Q = E(t). (4.4)

Let’s differentiate this with respect to t to get:

LI ′′ +RI ′ +
1

C
I = E′(t) (4.5)

Since we have that the initial current in the circuit is zero (since the circuit was not closed) we get one initial
value

I(0) = 0.

Now we have to figure out what I ′(0) is. This will depend on what E(t) is, and will be attained from equation
(4.4).

We will consider two cases for E(t) in this section:

1. E is a battery and so E(t) ≡ E0 a constant

2. E is an alternating current (AC) generator with E(t) = E0 cosωt

E(t) = E0

In the case where we have a battery attached, E′(t) = 0, E(0) = E0, and we have I ′(0) =
E0

L
− Q0

LC
by

plugging t = 0 into (4.4) and solving for I ′(0) where Q0 is the initial charge on the capacitor.

E(t) = E0 cosωt

In the case where we have an AC generator attached, E′(t) = −ωE0 sinωt, E(0) = E0, and we have

I ′(0) =
E0

L
− Q0

LC
by plugging t = 0 into (4.4) and solving for I ′(0) where Q0 is the initial charge on the

capacitor.

Exercises

1. A resistor and an inductor are connected in series with a battery of constant voltage E0, as shown in
Figure 1. The switch is closed at t = 0. Assuming L = 0.2henrys, R = 2ohms, and E0 = 4volts, find

(a) a formula for the current as a function of t.

(b) the voltage drop across the resistance and that across the inductance.

2. In the circuit of Figure 4.2, assume that L = 0.5henrys, R = 2ohms, C = 0.1farads, E = 4volts, and
Q0 = 0. Find the current in the loop.

3. In the circuit of Figure 4.2, assume that R, L, C, and Q0 are the same as in Exercise 2 but that
E(t) = 2 sin 4t volts. Find the current in the loop as a function of time.



126 CHAPTER 4. SOME APPLICATIONS OF DIFFERENTIAL EQUATIONS

4.6 Additional Exercises



Chapter 5

Laplace Transformations

5.1 The Laplace Transform

In this chapter we will develop yet another method for solving differential equations with an initial value.
The method we will use involves the Laplace Transformation. This transformation takes a function and gives
another function. The difference between the two functions is that they live in ”two different worlds”! Let’s
think of the original function being is the ”standard” world, and the new function being in the ”Laplace”
world. We have the loose associations between the two worlds (by loose I mean up to a constant):

Standard Laplace

Integration Division by s

Differentiation Multiplication by s

where s is as in the definition of the transform below. Surely this must seem surprising! However, while it is
interesting, we will not explore that relation in this chapter...

5.1.1 Definition of the Transform

Definition 5.1 (Laplace Transformation). Let f(t) be a function defined on the interval [0,∞). Define
L[f ](s) = F (s) by the improper integral (when it is convergent):

F (s) =

∫ ∞
0

e−stf(t) dt,

where s is a real number.

It is possible that there may be no s value for which the integral is convergent. We will only consider
functions whose Laplace transform exists on intervals of the form (s0,∞) for some s0 ∈ R. Now you might
ask ”when can we guarantee that a function has a Laplace transform on some interval (a,∞)?”

An answer to this question is if the function is of exponential order. This is not the only answer, but it is
good enough for us right now.

Definition 5.2. Let f(t) and g(t) be two functions. Suppose that there exist M > 0 and N > 0 such that

|f(t)| ≤Mg(t)

whenever t ≥ N . Then we say that f(t) is of the order of g(t). The notation for this statement is

f(t) = O[g(t)].

In particular, if g(t) = eat for some a ∈ R, we say that f(t) is of exponential order.

127
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Theorem 5.3. Let f be piecewise continuous on the interval [0,∞), and let f(t) = O[eat] for some a ∈ R.
Then the Laplace transform F (s) exists at least for s > a.

Proof. Since f(t) = O[eat] we have constants M,N > 0 such that |f(t)| ≤Meat for t ≥ N . Then:

F (s) =

∫ ∞
0

e−stf(t) dt

≤
∫ N

0
e−stf(t) dt+

∫ ∞
N

e−st|f(t)| dt

≤
∫ N

0
e−stf(t) dt+

∫ ∞
N

e−st
(
Meat

)
dt

=

∫ N

0
e−stf(t) dt+

∫ ∞
N

Me−(s−a)t dt <∞

at least for s > a.

5.1.2 Examples of the Transform

Let’s find the Laplace transform of a few simple functions:

Example 5.4. Find the Laplace transform of the following functions:

(a) f(t) = c, c 6= 0

(b) f(t) = tn, n a positive integer

(c) f(t) = eat, a ∈ R

(d) f(t) = sin at, a 6= 0

Solution.

(a)

F (s) =

∫ ∞
0

ce−st dt = c lim
R→∞

∫ R

0
e−st dt = c lim

R→∞

(
−1

s
e−st

)∣∣∣∣R
0

= lim
R→∞

−c
s
e−sR +

c

s
=
c

s
, s > 0.

(b) We will make an induction argument on n to find this Laplace transform.

(n = 1) ∫ ∞
0

te−stdt
IBP
= − t

s
e−st

∣∣∣∣∞
0

+
1

s

∫ ∞
0

e−stdt

(a)
= 0 +

1

s

(
1

s

)
=

1

s2

(n = 2) ∫ ∞
0

t2e−stdt
IBP
= − t

2

s
e−st

∣∣∣∣∞
0

+
2

s

∫ ∞
0

te−stdt

(n=1)
= 0 +

2

s

(
1

s2

)
=

2

s3

Inductive Hypothesis

L[tn] =

∫ ∞
0

tne−stdt =
n!

sn+1
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(n+ 1 case)

L[tn+1] =

∫ ∞
0

tn+1e−stdt
IBP
= − t

n+1

s
e−st

∣∣∣∣∞
0

+
n+ 1

s

∫ ∞
0

tne−stdt

(Ind. Hyp.)
= 0 +

n+ 1

s

(
n!

sn+1

)
=

(n+ 1)!

s(n+1)+1

So by induction we have that

F (s) =
n!

sn+1
, s > 0.

(c)

F (s) =

∫ ∞
0

e−steatdt =

∫ ∞
0

e−(s−a)tdt = − 1

s− a
e−(s−a)t

∣∣∣∣∞
0

if we have that s > a then the integral converges and is:

F (s) =
1

s− a
, s > a.

(d)

F (s) =

∫ ∞
0

e−st sin at dt
IBP
= −e

−st

a
cos at

∣∣∣∣∞
0

− s

a

∫ ∞
0

e−st cos at dt

=
1

a
− s

a

∫ ∞
0

e−st cos at dt
IBP
=

1

a
− s

a

(
e−st

a
sin at

∣∣∣∣∞
0

+
s

a

∫ ∞
0

e−st sin at dt

)
=

1

a
− s

a

(
s

a

∫ ∞
0

e−st sin at dt

)
=

1

a
− s2

a2

∫ ∞
0

e−st sin at dt

Isolating the integral with sine we get:(
1 +

s2

a2

)∫ ∞
0

e−st sin at dt =
1

a

which gives:

L[sin at] =
1

a

(
1

1 + s2

a2

)
=

1

a

(
1

s2+a2

a2

)
=

a

s2 + a2
.

More compactly:

F (s) =
a

s2 + a2
, s > 0.

�

Exercises

Find the Laplace transform of the given function using the definition of the transform.

1. f(t) = cos at

2. f(t) = teat

3. f(t) = t sin at
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4. f(t) = tneat

Recall that cosh bt =
ebt + e−bt

2
and sinh bt =

ebt − e−bt

2
. Using this, find the Laplace transform of the given

functions.

(5) f(t) = cosh bt

(6) f(t) = sinh bt

(7) f(t) = eat cosh bt

(8) f(t) = eat sinh bt

Recall that cos bt =
eibt + e−ibt

2
and sin bt =

eibt − e−ibt

2i
. Using this, and assuming that the necessary

integration formulas extend to this case, find the Laplace transform of the given functions.

(9) f(t) = cos bt

(10) f(t) = sin bt

(11) f(t) = eat cos bt

(12) f(t) = eat sin bt

Challenge Problems:

(13) The gamma function is defined as:

Γ(n+ 1) =

∫ ∞
0

xne−xdx.

(a) Show that, for n > 0,

Γ(n+ 1) = nΓ(n).

(b) Show that Γ(1) = 1.

(c) If n is a positive integer, show that

Γ(n+ 1) = n!.

(d) Show that, for n > 0,

n(n+ 1)(n+ 2) · · · (n+ k − 1) =
Γ(n+ k)

Γ(n)
.

(14) Consider the Laplace transform of tp, where p > −1.

(a) Referring to the previous exercise, show that

L[tp] =

∫ ∞
0

e−sttpdt =
1

sp+1

∫ ∞
0

xpe−xdx =
Γ(p+ 1)

sp+1
, s > 0.
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(b) Show that

L[t−
1
2 ] =

2√
s

∫ ∞
0

e−x
2
dx, s > 0.

It is possible to show that ∫ ∞
0

e−x
2
dx =

√
π

2
;

hence

L[t−
1
2 ] =

√
pi

s
, s > 0.

(c) Show that

L[t
1
2 ] =

√
π

2s
3
2

, s > 0.
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5.2 Properties of the Laplace Transform

In this section we will give various properties of the Laplace transform as well as a table of common
Laplace transformations.

Theorem 5.5 (Properties of the Laplace Transform). Suppose f and g are piecewise continuous on the
interval [0,∞) and that f(t) = O[eat] and g(t) = O[ebt], then F (s) exists for s > a and G(s) exists for s > b.
Then the Laplace transform has the following properties:

(a) (Linearity)
L[c1f(t) + c2g(t)] = c1F (s) + c2G(s)

for s > max{a, b}.

(b) (The Shifting Theorem)
If h(t) = ectf(t), then H(s) = F (s− c) for s > a+ c.

(c) If k(t) =

∫ t

0
f(u) du, then K(s) =

1

s
F (s) for s > max{a, 0}.

(d) If pn(t) = tnf(t), then Pn(t) = (−1)n
dnF (s)

dsn
, for s > a.

(e) If q(t) =

{
0, 0 < t < c

f(t− c), t > c
, then Q(s) = e−csF (s), s > a.

(f) Suppose that f (n−1) = O[eat], f, f ′, ..., f (n−1) are continuous on [0,∞), and that f (n) is piecewise con-
tinuous on [0,∞). Then L[f (n)](s) exists for s > max{a, 0} and

L[f (n)] = snF (s)−
[
sn−1f(0) + sn−1f ′(0) + · · ·+ sf (n−2)(0) + f (n−1)(0)

]
.

Proof.

(a)

L[c1f(t)+c2g(t)] =

∫ ∞
0

e−st(c1f(t) + c2g(t)) dt =

∫ ∞
0

e−stc1f(t) dt+

∫ ∞
0

e−stc2g(t) dt = c1F (s)+c2G(s).

(b)

H(s) =

∫ ∞
0

e−stectf(t) dt =

∫ ∞
0

e−(s−c)tf(t) dt = F (s− c)

(c)

K(s) =

∫ ∞
0

(
e−st

∫ t

0
f(u) du

)
dt

To evaluate this integral we need to use integration by parts with the following choices of v and dw:

v =
∫ t
0 f(u) du dw = e−stdt

dv = f(t) dt w = −1

s
e−st

Then we can continue the integral:

K(s) =

∫ ∞
0

(
e−st

∫ t

0
f(u) du

)
dt =

(
−1

s
e−st

∫ t

0
f(u) du

)∣∣∣∣∞
0

+
1

s

∫ ∞
0

e−stf(t) dt = 0+
1

s
F (s) =

1

s
F (s).
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Since part (f) of this theorem will be particularly helpful to us in solving differential equations, let’s do a
few examples of it, but first let’s write down the general forms of L[f ′] and L[f ′′] (assuming that L[f ] = F ) :

L[f ′] = sF (s)− f(0)

L[f ′′] = s2F (s)− sf(0)− f ′(0)

Example 5.6. Assuming that L[f ] = F , find the Laplace transform of the indicated derivative of f in terms
of F :

(a) f ′, if f(0) = 3.

(b) f ′′, if f(0) = 1 and f ′(0) = 2.

Solution.

(a) Using the formulas above:

L
[
f ′
]

= sF (s)− f(0) = sF (s)− 3.

(b) Again using the formulas above:

L
[
f ′′
]

= s2F (s)− sf(0)− f ′(0) = s2F (s)− s− 2.

�

Property 5.7 (Table of Common Laplace Transforms).
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f(t) F (s)

c
c

s
, s > 0

tn
n!

sn+1
, s > 0

eat
1

s− a
, s > a

tneat (n a positive integer)
n!

(s− a)n+1
, s > a

tpeat (p > −1)
Γ(p+ 1)

sp+1
, s > 0

sin at
a

s2 + a2
, s > 0

cos at
s

s2 + a2
, s > 0

sinh at
a

s2 − a2
, s > |a|

cosh at
s

s2 − a2
, s > |a|

t sin at
2as

(s2 + a2)2
, s > 0

t cos at
s2 − a2

(s2 + a2)2
, s > 0

t sinh at
2as

(s2 − a2)2
, s > |a|

t cosh at
s2 + a2

(s2 − a2)2
, s > |a|

sin at− at cos at
2a3

(s2 + a2)2
, s > 0

at cosh at− sinh at
2a3

(s2 − a2)2
, s > |a|

ectf(t) F (s− c)

eat sin bt
b

(s− a)2 + b2
, s > a

eat cos bt
s− a

(s− a)2 + b2
, s > a

f(ct)
1

c
F
(
s
c

)
, c > 0

f (n)(t) snF (s)− [sn−1f(0) + sn−2f ′(0) + · · ·+ f (n−1)(0)]

(−t)nf(t) F (n)(s)

Using the table above, combined with Theorem 1, we can easily compute the Laplace transformations of
several functions. Here are some examples:

Example 5.8. Compute the Laplace transform of the following functions:
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(a) f(t) = e−2t cos 3t

(b) f(t) = t2 sin t

(c) f(t) =

{
0, 0 < t < 1

(t− 1)2, t > 1

Solution.

(a) If we let g(t) = cos 3t, then f(t) = e−2tg(t) so we can use Theorem 1.b to get that (with c = −2):

F (s) = G(s− c) =
s+ 2

(s+ 2)2 + 9

since G(s) =
s

s2 + 9
from the table above.

(b) If we let g(t) = sin t, then G(s) =
1

s2 + 1
and f(t) = t2g(t), so by Theorem 1.d we get (with n = 2):

F (s) = (−1)2
d2G

ds2
=

d2

ds2

[
1

s2 + 1

]
=

6s2 − 2

(s2 + 1)3
.

(c) If we let g(t) = t2, then G(s) =
2

s3
and by Theorem 1.e we have (with c = 1):

F (s) = e−csG(s) = e−s
2

s3
=

2

s3
e−s.

�

Exercises

Find the Laplace transform of the following functions:

1. f(t) = 2e−t − 3 sin 4t

2. f(t) = cosh 2t

3. f(t) = e2t sin 3t

4. f(t) = e−t cos 2t

5. f(t) = e−3tt4

6. f(t) = t3e4t

7. f(t) = t2 cos t

8. f(t) = t sin 2t

9. g(t) = e2t
√
t
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10. g(t) =
∫ t
0 sin 2u du

11. g(t) =
∫ t
0 x

2ex dx

12. g(t) =
∫ t
0 cos2 u du

13. g(t) =

{
0, 0 < t < 2
1, t > 2

14. g(t) =

{
0, 0 < t < π

sin(t− π), t > π

15. g(t) =

{
0, 0 < t < 1
t2, t > 1

16. g(t) =

{
0, 0 < t < 1

(t− 1)et, t > 1

Let L[f ] = F . Find the Laplace transform of the given derivative of f :

(17) f ′′, if f(0) = −3 and f ′(0) = 0

(18) f ′′′, if f(0) = 1, f ′(0) = 0, and f ′′(0) = −5

(19) f ′′, if f(0) = −4 and f ′(0) = −9

(20) f ′′, if f(0) = 8 and f ′(0) = 33

(21) f ′′, if f(0) = 56 and f ′(0) = 19

(22) f ′′, if f(0) = 23 and f ′(0) = −11

Challenge Problems:

(23) Prove Theorem 1.d.

(24) Prove Theorem 1.e.

(25) If g(t) = f(ct), where c is a positive constant, show that:

G(s) =
1

c
F
(s
c

)
.
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5.3 Some Special Functions

5.3.1 Step Functions

Recall the unit step function u(t) given by

u(t) :=

{
0, x < 0
1, x ≥ 0

The graph of this function is:

We will now define a variant of this function that, instead of stepping up to 1 at t = 0, will step up to 1
at time t = c. Define the function uc(t) as follows:

uc(t) := u(t− c) =

{
0, x < c
1, x ≥ c

The graph of this function is:

We will be primarily concerned with the case in which c is positive since we are only going to be interested
in cases in which t > 0. You can think of the function uc(t) as being a switch that you turn on at time t = c.
If we multiply uc(t) onto any function f(t) as follows, we can think of turning on the function f(t) at time
t = c. The way to get a function to start at time t = c is to write it as follows:

uc(t)[f(t− c)] :=

{
0, t < c

f(t− c), t ≥ c
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Observe the picture below:

See how uc(t)[f(t − c)] is the exact same as f(t) except it starts at time t = c rather than time t = 0?
This is especially useful in applications such as those in Section 4.6 (think of turning the switch on and off
and maybe changing the input voltage function while the switch is open).

We would now like to take the Laplace to take the Laplace transformation of uc(t)[f(t− c)]. Notice that
by Theorem 1.e of Section 5.2 we have that:

L [uc(t)[f(t− c)]] = e−csF (s),

where F (s) = L[f ](s).

We have two useful formulas. These will allow us to go back and forth between piecewise notation and
step function notation:

f(t) =

{
f1(t), 0 < t < c
f2(t), t ≥ c ↔ f(t) = f1(t) + uc(t)[f2(t)− f1(t)]

and

f(t) = f1(t) + uc(t)[f2(t)] ↔ f(t) =

{
f1(t), 0 < t < c

f1(t) + f2(t), t ≥ c

Example 5.9. Switch from piecewise notation to step function notation:

(a)

f(t) =

{
t2, 0 < t < 3

sin 2t, t ≥ 3

(b)

f(t) =

{
0, 0 < t < 5

ln t, t ≥ 5
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Solution.

(a)
f(t) = t2 + u3(t)[sin 2t− t2]

(b)
f(t) = u5(t)[ln t]

�

Example 5.10. Switch from step function notation to piecewise notation:

(a)
f(t) = u1(t)[t− 1]− 2u2(t)[t− 2] + u3(t)[t− 3]

(b)
f(t) = cos t2 + u3(t)[t]

Solution.

(a) First let’s rewrite the function

f(t) = u1(t)[t− 1] + u2(t)[−2(t− 2)] + u3(t)[t− 3].

Then we have

f(t) =


0, 0 < t < 1

t− 1, 1 ≤ t < 2
t− 1− 2(t− 2), 2 ≤ t < 3

t− 1− 2(t− 2) + t− 3, 3 ≤ t

or simplified:

f(t) =


0, 0 < t < 1

t− 1, 1 ≤ t < 2
3− t, 1 ≤ t < 3

0, 3 ≤ t

(b)

f(t) =

{
cos t2, 0 < t < 3

cos t2 + t, t ≥ 3

�

5.3.2 Dirac-Delta Distribution

Let’s define a sequence of functions as follows:

δn(t) =


0, t < − 1

n
n, − 1

n ≤ t ≤
1
n

0, t > 1
n

for n = 1, 2, 3, .... Below are the graphs of the first five functions in the sequence: δ1, δ2, δ3, δ4, and δ5:
These functions converge to a distribution (or generalized function) known as the Dirac-Delta Distribution

δ(t) given by:

δ(t) =

{
0, t 6= 0
∞, t = 0
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One interesting feature of the Dirac-Delta distribution is the following:∫ ∞
−∞

δ(t) dt = 1,

and maybe even more interesting is: ∫ ∞
−∞

f(t)δ(t) dt = f(0).

Now we can also define the Shifted Dirac-Delta distribution as follows:

δt0(t) = δ(t− t0)

which essentially looks like:

δ(t) =

{
0, t 6= t0
∞, t = t0

Just as the Dirac-Delta distribution has interesting properties when integrated, so does its shifted coun-
terpart: ∫ ∞

−∞
δt0(t) dt = 1,

and ∫ ∞
−∞

f(t)δt0(t) dt = f(t0). (5.1)

Using equation (5.1), we will now take the Laplace transform of δt0(t) (where we assume that t0 ≥ 0):

L [δt0(t)] =

∫ ∞
0

e−stδt0(t) dt = e−st0

by Equation (5.1) where we let f(t) = e−st.

5.3.3 Periodic Functions

Exercises

Find the Laplace transform of the given function:

1. f(t) = u1(t) + 2u3(t)− 6u4(t)



5.3. SOME SPECIAL FUNCTIONS 141

2. g(t) = uπ(t)[t2]

3. h(t) = t− u1(t)[t− 1]

4. f(t) =


0, t < π

t− π, π ≤ t < 2π
0, t ≥ 2π

5. g(t) = uπ(t) [cos t]

Challenge Problems:

(6) Assume k > 0. Show

L−1[F (ks)] =
1

k
f

(
t

k

)
.

(7) Let a, b ∈ R with a > 0. Show

L−1[F (as+ b)] =
1

a
e−

bt
a f

(
t

a

)
.

(8) Use Exercise 7 to find the inverse Laplace transform of:

(a) F (s) =
2n+1n!

sn+1

(b) F (s) =
2s+ 1

4s2 + 4s+ 5

(c) F (s) =
1

9s2 − 12s+ 3

(d) G(s) = e2e−4s

2s−1
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5.4 The Inverse Laplace Transform

Now that we have had plenty of practice going from the ”normal” world to the world of ”Laplace”, we
should learn how to go back. For the purposes of these notes, we will not need any high powered theorems;
we will just be doing the opposite of what we did in Section 5.2. So instead of starting on the left side of the
table in 5.2, we will try to get the function we are trying to take the inverse transform of and try to get it
into a sum of forms on the right side of the table so we can just use the linearity of the Laplace transform to
go back. This may seem unclear, but it should become clear after a few examples. To do this process, you
will have to be VERY comfortable with partial fractions as well as completing the square.

Example 5.11. Find the inverse Laplace transform of the following functions:

(a)

F (s) =
3

s2 + 4

(b)

G(s) =
2s− 3

s2 + 2s+ 10

(c)

H(s) =
4

(s− 1)3

Solution.

(a) This almost looks like the transform of sin 2t, but the top should be a 2, not a 3; however this is easily
cured:

L−1[F (s)] = L−1
[

3

s2 + 4

]
= L−1

[
3

2

2

s2 + 4

]
=

3

2
L−1

[
2

s2 + 4

]
=

3

2
sin 2t.

(b) To begin with, for this one, we need to complete the square

G(s) =
2s− 3

s2 + 2s+ 10
=

2s− 3

(s2 + 2s+ 1) + 9
=

2s− 3

(s+ 1)2 + 9
=

2s

(s+ 1)2 + 9
− 3

(s+ 1)2 + 9
.

Now we will have to play some tricks again:

G(s) =
2s

(s+ 1)2 + 9
− 3

(s+ 1)2 + 9
=

2(s+ 1− 1)

(s+ 1)2 + 9
− 3

(s+ 1)2 + 9

=
2(s+ 1)− 2

(s+ 1)2 + 9
− 3

(s+ 1)2 + 9
=

2(s+ 1)

(s+ 1)2 + 9
− 5

(s+ 1)2 + 9

= 2
s+ 1

(s+ 1)2 + 9
− 5

3

3

(s+ 1)2 + 9

which is the Laplace transform of

g(t) = 2e−t cos 3t− 5

3
e−t sin 3t.

(c) This one is going to be a bit trickier. If we let a = 1 and n = 2 then H(s) looks an awful lot like the

Laplace transform of t2et which is
2!

(s− 1)2+1
=

4

(s− 1)3
because it is. Thus

L−1[H(s)] = t2et.
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�

Example 5.12. Find the inverse Laplace transform of:

F (s) =
2e−2s

s2 − 4
.

Solution. This is the transform of f(t) = u2(t)[sinh 2(t− 2)].

�

Exercises

Find the inverse Laplace transform of:

1. G(s) =
a1
s

+
a2
s2

+
a3
s3

2. F (s) =
1

s2 + 9

3. G(s) =
4(s+ 1)

s2 − 16

4. H(s) =
1

(s+ 1)(s+ 2)

5. F (s) =
s+ 3

(s+ 1)2 + 1

6. J(s) =
1

(s− 2)3
+

1

(s− 2)5

7. K(s) =
e−3s − e−s

s

8. F (s) =
e−s + e−2s − 3e−3s + e−6s

s2

9. Q(s) =
2s+ 1

s2 + 4s+ 13

10. G(s) =
e−πs

s2 + 2s+ 2

11. F (s) =
s

(s2 + a2)(s2 + b2)



144 CHAPTER 5. LAPLACE TRANSFORMATIONS

5.5 Convolution

In this section we will be primarily concerned with taking the inverse Laplace transform of a product of
known Laplace transforms. To say it symbolically, we will be finding

L−1[F (s)G(s)]

where F (s) and G(s) are the Laplace transforms of two known functions f(t) and g(t) respectively.

Definition 5.13 (Convolution). Let f(t) and g(t) be two functions. Then the function (f ∗ g)(t) defined by:

(f ∗ g)(t) =

∫ t

0
f(t− τ)g(τ) dτ

is called the convolution of f and g.

The convolution operator satisfies several algebraic properties:

Theorem 5.14. The convolution operator satisfies:

(a) (Commutativity)
f ∗ g = g ∗ f

(b) (Distributivity)
f ∗ (g1 + g2) = f ∗ g1 + f ∗ g2

(c) (Associativity)
f ∗ (g ∗ h) = (f ∗ g) ∗ h

(d)
f ∗ 0 = 0 ∗ f = 0

Proof. Left to the reader.

Theorem 5.15. The inverse Laplace transform of H(s) = F (s)G(s) where F (s) and G(s) are the Laplace
transforms of two known functions f(t) and g(t) respectively is (f ∗ g)(t).

Proof. Let’s start by noting that:

F (s) =

∫ ∞
0

e−srf(r) dr

and

G(s) =

∫ ∞
0

e−sτg(τ) dτ.

The variable of integration is different for a reason, however it does not have any effect on the integral other
than to distinguish the two. Now we have:

F (s)G(s) =

∫ ∞
0

e−srf(r) dr

∫ ∞
0

e−sτg(τ) dτ.

Then since the first integral does not depend on the variable of integration of the second we can write:

F (s)G(s) =

∫ ∞
0

e−sτg(τ)

[∫ ∞
0

e−srf(r) dr

]
dτ =

∫ ∞
0

g(τ)

[∫ ∞
0

e−s(r+τ)f(r) dr

]
dτ.

Now let’s use the change of variable r = t− τ for a fixed value of τ (so that dt = dr) to get:

F (s)G(s) =

∫ ∞
0

g(τ)

[∫ ∞
τ

e−stf(t− τ) dt

]
dτ =

∫ ∞
0

∫ ∞
τ

e−stf(t− τ)g(τ) dtdτ .
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Switching the order of integration we get:

F (s)G(s) =

∫ ∞
0

∫ t

0
e−stf(t− τ)g(τ) dτdt =

∫ ∞
0

e−st(f ∗ g)(t) dt = L[(f ∗ g)(t)].

Thus we have shown that L−1[H(s)] = (f ∗ g)(t).

Example 5.16. Find the convolution of the two functions:

f(t) = 3t and g(t) = sin 5t.

Solution.

(f ∗ g)(t) =

∫ t

0
f(t− τ)g(τ) dτ

=

∫ t

0
3(t− τ) sin 5τ dτ

= 3

∫ t

0
(t− τ) sin 5τ dτ

Now using integration by parts with

u = t− τ dv = sin 5τ dτ

du = −dτ v = −1

5
cos 5τ

(f ∗ g)(t) = 3

∫ t

0
(t− τ) sin 5τ dτ

= −3

5
(t− τ) cos 5τ

∣∣∣∣t
0

− 3

5

∫ t

0
cos 5τ dτ

= 0−
(
−3

5
t

)
− 3

25
sin 5τ

∣∣∣∣t
0

=
3

5
t− 3

25
sin 5t

�

Now let’s see how this is useful for finding inverse Laplace transforms:

Example 5.17. Find the inverse Laplace transform of:

F (s) =
s

(s+ 1)(s2 + 4)
.

Solution. Notice the following:

F (s) =
1

s+ 1

s

s2 + 4
.

If we let G(s) =
1

s+ 1
and H(s) =

s

s2 + 4
. Then by Theorem 2 (henceforth referred to as the Convolution

Theorem) since F (s) = G(s)H(s) we have

L−1[F (s)] = L−1[G(s)H(s)] = L−1[G(s)] ∗ L−1[H(s)] = e−t ∗ cos 2t =

∫ t

0
e−(t−τ) cos 2τ dτ .

�
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Exercises

Find the Laplace transform of the given function.

1. f(t) =
∫ t
0 (t− τ)2 cos 2τ dτ

2. g(t) =
∫ t
0 e
−(t−τ) sin τ dτ

3. h(t) =
∫ t
0 (t− τ)eτ dτ

4. k(t) =
∫ t
0 sin (t− τ) cos τ dτ

Find the inverse Laplace transform of the given function using the Convolution theorem.

(5) F (s) =
1

s4(s2 + 1)

(6) G(s) =
s

(s+ 1)(s2 + 4)

(7) H(s) =
1

(s+ 1)2(s2 + 4)

(8) K(s) =
Q(s)

s2 + 1
where Q(s) = L[q(t)]

Challenge Problems:

(9) Prove Theorem 1 of this section.

(10) Find an example showing that (f ∗ 1)(t) need not be equal to f(t).

(11) Show that f ∗ f need not be nonnegative. Hint: Use the example f(t) = sin t.
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5.6 Application to Initial Value Problems

Finally getting back to differential equations, we will now apply the method of Laplace transformations
to solving initial value problems which are linear and have constant coefficients. The only catch is that the
initial values must all be at t = 0 due to the definition of the Laplace transformation.

5.6.1 1st Order IVPs

Let’s begin by solving equations of the form:

ay′ + by = f(t); y(0) = c

where y is a function of t.

Remember that we have:

L[y′](s) = sY (s)− y(0),

so since the Laplace transform is linear, if we take the Laplace transform of both sides of the equation we get:

a (sY (s)− y(0)) + bY (s) = F (s)

where F (s) = L[f(t)]. The idea is to solve for Y (s) and then take the inverse Laplace transform to find y(t).
The y(t) you found will be the solution to the IVP. Let’s see an example of this:

Example 5.18. Solve the IVP:

y′ + 2y = e3t; y(0) = 1.

Solution. Let’s begin by taking the Laplace transform of the differential equation:

sY (s)− y(0) + 2Y (s) =
1

s− 3
.

Now plug in the initial value:

sY (s)− 1 + 2Y (s) =
1

s− 3
.

Now solve for Y (s):

(s+ 2)Y (s) =
1

s− 3
+ 1

which gives

Y (s) =
1

(s− 3)(s+ 2)
+

1

s+ 2

and using partial fractions:

Y (s) =
1

5

1

s− 3
− 1

5

1

s+ 2
+

1

s+ 2
=

1

5

1

s− 3
+

4

5

1

s+ 2
.

Now we can take the inverse Laplace transform and get:

y(t) =
1

5
e3t +

4

5
e−2t

as our final answer.

�
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5.6.2 2nd Order IVPs

Now we will focus on solving equations of the form:

ay′′ + by′ + cy = f(t); y(0) = k1, y
′(0) = k2.

We already know that

L[y′] = sY (s)− y(0),

now remember that

L[y′′] = s2Y (s)− sy(0)− y′(0).

Using the above two statements we can solve second order IVPs. If we take the Laplace transformation of
both sides of the second order equation above we have:

a
(
s2Y (s)− sy(0)− y′(0)

)
+ b (sY (s)− y(0)) + cY (s) = F (s).

Then, just as in the first order case, we solve for Y (s) and take the inverse Laplace transform to find our
desired solution: y(t). Let’s see some examples of this:

Example 5.19. Solve the given IVPs:

(a)

y′′ + 3y′ + 2y = 6et; y(0) = 2, y′(0) = −1

(b)

y′′ + 4y = sin t− uπ(t) [sin t] ; y(0) = y′(0) = 0

(c)

y′′ + 2y′ + 2y = δπ(t); y(0) = 1, y′(0) = 0

Solution.

(a) Let’s begin by taking the Laplace transform of both sides:

s2Y (s)− sy(0)− y′(0) + 3 (sY (s)− y(0)) + 2Y (s) =
6

s− 1
.

Now let’s plug in the initial values:

s2Y (s)− 2s+ 1 + 3 (sY (s) + 1) + 2Y (s) =
6

s− 1
,

now simplify:

s2Y (s)− 2s+ 1 + 3sY (s) + 3 + 2Y (s) =
6

s− 1
.

Next we solve for Y (s):

s2Y (s) + 3sY (s) + 2Y (s)− 2s+ 4 =
6

s− 1

(s2 + 3s+ 2)Y (s) = 2s− 4 +
6

s− 1

Y (s) =
2s− 4

s2 + 3s+ 2
+

6

s− 1
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Now we need to get Y (s) into a form we can take the inverse Laplace transform of. Let’s start by seeing
if we can factor the denominator of the first term in Y (s):

s2 + 3s+ 2 = (s+ 2)(s+ 1).

Thus we should use partial fractions to get this into a form which we can take the inverse transform of:

2s− 4

s2 + 3s+ 2
=

2s− 4

(s+ 2)(s+ 1)
=

8

s+ 2
− 6

s+ 1

thus:

Y (s) =
8

s+ 2
− 6

s+ 1
+

6

s− 1
which has the inverse transform:

y(t) = 8e−2t − 6e−t + 6et.

(b) Just as above, we will begin by taking the Laplace transform of the differential equation... Except that
there is one small problem! How do we take the Laplace transform of f(t) = sin t − uπ(t) [sin t]? The
first sin t isn’t a problem, but the uπ(t) [sin t] is! We need to get this in the proper form to take the
transform of, this means that instead of a ”t”, we need a ”t− π”. So let’s fix this by adding zero:

sin t = sin(t− π + π) = sin[(t− π) + π] = sin(t− π) cosπ + cos(t− π) sinπ = − sin(t− π).

Thus
sin t− uπ(t) [sin t] = sin t+ uπ(t) [sin(t− π)]

which has the Laplace transform:
1

s2 + 1
+ e−πs

1

s2 + 1
.

So the Laplace transform of the differential equation is:

s2Y (s)− sy(0)− y′(0) + 4Y (s) =
1

s2 + 1
+ e−πs

1

s2 + 1
.

Plugging in the initial values:

s2Y (s) + 4Y (s) =
1

s2 + 1
+ e−πs

1

s2 + 1
.

Isolating Y (s) we get:

Y (s) =
1

(s2 + 1)(s2 + 4)
+ e−πs

1

(s2 + 1)(s2 + 4)
.

Using partial fractions on
1

(s2 + 1)(s2 + 4)
we get:

1

(s2 + 1)(s2 + 4)
=

1

3

1

s2 + 1
− 1

3

1

s2 + 4
.

Thus

Y (s) =
1

3

1

s2 + 1
− 1

3

1

s2 + 4
+ e−πs

1

3

1

s2 + 1
− e−πs 1

3

1

s2 + 4
.

Getting this into a form we can take the inverse transform of:

Y (s) =
1

3

1

s2 + 1
− 1

6

2

s2 + 4
+ e−πs

1

3

1

s2 + 1
− e−πs 1

6

2

s2 + 4
.

Thus:

y(t) =
1

3
sin t− 1

6
sin 2t+ uπ(t)

[
1

3
sin(t− π)

]
− uπ(t)

[
1

6
sin 2(t− π)

]
,

which could be simplified to:

y(t) =
1

3
sin t− 1

6
sin 2t+

1

6
uπ(t) [2 sin(t− π)− sin 2(t− π)] .
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(c) This one we should have no problem taking the Laplace transform of:

s2Y (s)− sy(0)− y′(0) + 2 (sY (s)− y(0)) + 2Y (s) = e−πs,

and plugging in the initial values gives:

s2Y (s)− s+ 2 (sY (s)− 1) + 2Y (s) = e−πs.

Simplifying:

s2Y (s)− s+ 2sY (s)− 2 + 2Y (s) = (s2 + 2s+ 2)Y (s)− (s+ 2) = e−πs.

Solving for Y (s) we get:

Y (s) =
s+ 2

s2 + 2s+ 2
+ e−πs

1

s2 + 2s+ 2
.

To get this in a form more acceptable for an inverse Laplace transform we will need to complete the
square:

Y (s) =
s+ 2

(s2 + 2s+ 1) + 1
+ e−πs

1

(s2 + 2s+ 1) + 1

=
s+ 2

(s+ 1)2 + 1
+ e−πs

1

(s+ 1)2 + 1

=
s+ 1

(s+ 1)2 + 1
+

1

(s+ 1)2 + 1
+ e−πs

1

(s+ 1)2 + 1

Thus our solution is:

y(t) = e−t cos t+ e−t sin t+ uπ(t)
[
e−(t−π) sin(t− π)

]
.

�

Exercises

Solve the given IVP:

1. y′ + 2y = u1(t)− u5(t); y(0) = 1

2. y′′ + 3y′ + 2y = 1− u2(t); y(0) = y′(0) = 0

3. y′ + y = t; y(0) = 0

4. y′ + 2y = sinπt; y(0) = 0

5. y′′ − y = 2 sin t; y(0) = 2, y′(0) = 1

6. y′′ + 2y′ + y = 4 sin t; y(0) = −2, y′(0) = 1

7. y′′ + 4y′ + 5y = 25t; y(0) = −5, y′(0) = 7

8. y′′ + 4y = δπ(t)− δ2π(t); y(0) = y′(0) = 0
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9. y′′ + 2y′ + 3y = sin t+ δ3π(t); y(0) = y′(0) = 0

10. y′′ + y = uπ
2
(t) + 3δ 3π

2
(t); y(0) = y′(0) = 0

11. y′′ + y = δ2π(t) cos t; y(0) = 0, y′(0) = 1
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5.7 Additional Exercises



Chapter 6

Series Solutions to Differential Equations

6.1 Taylor Series

Exercises

153
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6.2 Ordinary Points

Exercises
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6.3 Singular Points

Exercises
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6.4 Additional Exercises



Chapter 7

Systems of First-Order Linear Differential Equations

7.1 Eigenvalues and Eigenvectors of a 2× 2 Matrix

This section will be a brief digression into the topic of Linear Algebra, a field that is absolutely inseparable
from differential equations, and is also fun in its own right! The idea for this section is to analyze the equation

Av = λv, (7.1)

where A is a 2× 2 matrix, v is a non-zero 2-dimensional vector, and λ is a (possibly complex) constant. For
our purposes, you may assume that A always has real entries.

7.1.1 Eigenvalues

Definition 7.1 (Eigenvalues/Eigenvectors). In the equation Av = λv, we call λ an eigenvalue of A and v
an eigenvector of A.

So, how do we get our hands on these eigenvalues and eigenvectors? Let’s start with the simpler of the

two: eigenvalues. Let I be the 2× 2 identity matrix, that is I =

(
1 0
0 1

)
. As you might guess if you don’t

already know, I is called the identity matrix since when you multiply a vector by it, you get the vector back,

i.e., Iv = v. This let’s us write λv = λIv. Note that λI =

(
λ 0
0 λ

)
. Now, let’s do some rearranging and

rewriting of the eigenvalue/eigenvector equation (7.1):

Av = λv = λIv

and moving everything to the left side gives:

Av − λIv = (A− λI)v = 0

(the bold zero here is because it is actually the zero vector, 0 =

(
0
0

)
). Now, let’s single out the part

(A−λI)v = 0. There are two ways this equation will be true: first, if v = 0, and second, if (A−λI) is singular
(not invertible). The first alternative is rather trivial, and as such, we will disregard it as we want nontrivial
solutions. So this means we are stuck with (A− λI) being singular. This means that det(A− λI) = 0... but
’lo and behold, this gives us a way to solve for λ! Why is this? Well, what is det(A− λI)? Let’s write it out:

if we let A =

(
a b
c d

)
, then

157
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det(A− λI) = det

(
a− λ b
c d− λ

)
= (a− λ)(d− λ)− bc
= ad− aλ− dλ+ λ2 − bc
= λ2 − (a+ d)λ+ (ad− bc)

So det(A− λI) is a polynomial in λ (remember that a, b, c, d are real numbers), and as such, we can find
the roots of it. This polynomial det(A− λI) is called the characteristic polynomial of A. Since this is a
polynomial of degree 2, it has two, not necessarily distinct, roots which we will call λ1 and λ2. λ1 and λ2 are
the eigenvalues of A.

Example 7.2. Compute the eigenvalues of

A =

(
6 4
1 0

)
Solution. So let’s begin by taking the determinant of A− λI:

det(A− λI) = det

(
2− λ 4

1 0− λ

)
= (6− λ)(−λ)− (4)(1) = λ2 − 6λ− 4 = 0

By the quadratic formula, the eigenvalues of A are:

λ =
6±
√

36− 16

2
=

6±
√

20

2
= 3±

√
5.

�

7.1.2 Eigenvectors

Now we will actually attempt to find the eigenvectors. The way this will work is by finding the nullspace of
A − λI, where λ is an eigenvalue of A. This amounts to solving the equation (A − λI)v = 0. Of course we
are looking for the solutions v 6= 0.

Definition 7.3 (Nullspace). The nullspace of a matrix M is the set of vectors v such that Mv = 0.

A solution v to the equation (A − λI)v = 0 is called an eigenvector of A with eigenvalue λ. So, how do
we actually go about finding these vectors? Well, this is really just solving a system of equations! If we let

v =

(
x
y

)
, then we have:

(A− λI)v =

(
a− λ b
c d− λ

)(
x
y

)
=

(
(a− λ)x+ by
cx+ (d− λ)y

)
=

(
0
0

)
which, rewritten in the usual system of equations format, we get:{

(a− λ)x+ by = 0
cx+ (d− λ)y = 0

Solving this system, we get the eigenvectors of A. I should point out that the solutions you get will not be
unique, however, they will be all be scalar multiples of each other (unless, possibly, if λ1 = λ2, which is a
special case which will be treated in section 7.3).
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Example 7.4. Find the eigenvectors of

A =

(
3 1
0 4

)
Solution. It is quite easy to see that the characteristic polynomial of A is (3−λ)(4−λ)−0 which immediately
shows that the eigenvalues of A are λ1 = 3 and λ2 = 4. Now, we need to compute the eigenvectors. Let’s first
find the one associated to λ1:

A− 3I =

(
0 1
0 1

)
and so the associated system of equations is {

0x+ 1y = 0
0x+ 1y = 0

Which really just means that y = 0 and we can choose anything we want for x, call it c1. So, the solutions

are vectors of the form v1 =

(
c1
0

)
= c1

(
1
0

)
(as a general practice, we will factor the constant outside of

the eigenvector, as we have done here). Now let’s do the same for the other eigenvalue λ2:

A− 4λ2 =

(
−1 1
0 0

)
and so the associated system of equations is{

−1x+ 1y = 0
0x+ 0y = 0

Again, the only condition that we get from this is that −x + y = 0 or x = y. So, this time, once we choose
one of the numbers (x or y), we automatically get the other, and so if we let x = c2, then y = c2 as well and

so v2 =

(
c2
c2

)
= c2

(
1
1

)
. Thus we have found both of the eigenvectors. Let’s sum this up in a table:

Eigenvalue Eigenvector

λ1 = 3 v1 = c1

(
1
0

)
λ2 = 4 v2 = c2

(
1
1

)
�

Exercises
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7.2 2× 2 Systems of First-Order Linear Differential Equations

Now we will work on systems of first order linear equations of the form:

v′(t) = Av(t) (7.2)

where v(t) =

(
x(t)
y(t)

)
and A =

(
a b
c d

)
, which may be written in the form:

{
x′ = ax + by
y′ = cx + dy

(7.3)

where we have dropped the (t) for simplicity.

We will begin this section by looking at a direct, calculus only, way of solving the system; then we will
turn to linear algebra to make life easier.

7.2.1 Calculus Approach

Let’s look at how to solve this system of equation using calculus techniques alone. Start by solving the first
equation in (7.3) for y:

y =
1

b

(
x′ − ax

)
.

Now take this and plug it into the second equation to get:

1

b

(
x′′ − ax′

)
= cx+

d

b

(
x′ − ax

)
.

Simplify this equation to arrive at:

x′′ − (a+ d)x′ + (ad− bc)x = 0.

We can solve this equation for x using the methods of Section 2.1. Assume that we have found the general
solution of this equation x(t). Plug this into the first equation in (7.3) and simply solve for y. This is all that
is needed to solve this system of equations!

Let’s do an example or two:

Example 7.5. Solve the system of equation:{
x′ = 3x + y
y′ = 4x

Solution. Solving the first equation for y we get

y = x′ − 3x

and plugging it into the second equation we end up with:

x′′ − 3x′ = 4x

or rewritten:

x′′ − 3x′ − 4x = 0.

This equation has the general solution:

x(t) = c1e
−t + c2e

4t.
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Plugging this into the first equaton in the system we have:

−c1e−t + 4c2e
4t = 3c1e

−t + 3c2e
4t + y.

Now solving for y in the equation above we get:

y(t) = −4c1e
−t + c2e

4t.

So the solution to this system is the pair of equations:

x(t) = c1e
−t + c2e

4t

y(t) = −4c1e
−t + c2e

4t

�

Another example with all nonzero coefficients:

Example 7.6. Solve the system of equation:{
x′ = −5x + y
y′ = 2x + 5y

Solution. Solving the first equation for y we get

y = x′ + 5x

and plugging it into the second equation we end up with:

x′′ + 5x′ = 2x+ 5x′ + 25x

or rewritten:

x′′ − 27x = 0.

This equation has the general solution:

x(t) = c1e
−
√
27t + c2e

√
27t.

Plugging this into the first equaton in the system we have:

−
√

27c1e
−
√
27t +

√
27c2e

√
27t = −5c1e

−
√
27t − 5c2e

√
27t + y.

Now solving for y in the equation above we get:

y(t) = (5−
√

27)c1e
−
√
27t + (5 +

√
27)c2e

√
27t.

So the solution to this system is the pair of equations:

x(t) = c1e
−
√
27t + c2e

√
27t

y(t) = (5−
√

27)c1e
−
√
27t + (5 +

√
27)c2e

√
27t

�
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7.2.2 Linear Algebra Approach

Exercises

Solve the given system of equations using the Calculus method:

1.

{
x′ = −5x
y′ = −5x + 2y

2.

{
x′ = 7x
y′ = −3x − 5y

3.

{
x′ = 6x + 5y
y′ = 7x − 2y

4.

{
x′ = −6x + 5y
y′ = 3x

5.

{
x′ = −6x + 2y
y′ = −6x + 3y

6.

{
x′ = − 3y
y′ = −2x + 2y
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7.3 Repeated Eigenvalues

Exercises
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7.4 The Two Body Problem

Exercises
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7.5 Additional Exercises
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Chapter 8

Numerical Methods

8.1 Euler’s Method

Exercises

167
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8.2 Taylor Series Method

Exercises
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8.3 Runge-Kutta Method

Exercises
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Abel’s formula, 81

Bernoulli equation, 60

Cauchy-Euler equation, 91
chain rule, 7
characteristic polynomial, 72
Clairaut’s Theorem, 28
complex number, 24

conjugate of, 24
imaginary part, 24

conjugate pair, 24
conjugate pairs theorem, 24
corresponding homogeneous equation, 55

differential equation, 35
exact, 48
homogeneous, 62
linear, 55

homogeneous, 55
nonhomogeneous, 55

order, 37
ordinary (ODE), 35
partial (PDE), 35
separable, 43

Euler’s Formula, 25
existence and uniqueness theorem, 65

fundamental theorem of algebra, 24

homogeneous function, 63

implicit differentiation, 8
indicial equation, 91
initial value, 38

problem (IVP), 38
integral curve, 39
integral curves, 31
integrating factor

for exact equations, 51
for linear equations, 57

integration by parts, 10
integration of multivariable functions, 28
interval of convergence, 16

Leibniz rule, 7
linear combination, 78
linearly independnet functions, 73
linearly indepenent functions, 78

partial derivatives, 27
partial fractions, 1, 12
partial sums, 14
product rule, see Leibniz rule

quotient rule, 9

radius of convergence, 16
Ricatti equation, 61

series, 14
convergent, 14
diverge, 14
finite, 14
geometric, 18
infinite, 14
power, 15

convergence of, see radius of convergence
reindexing a, 15

slope field, 30
solution, 36

curve, see also integral curve
explicit, 44
family of solutions, 39
general, 37, 78
implicit, 44
nontrivial, 37
particular, 82
trivial, 37

solutions
fundamental set of, 78

superposition, 83

test
alternating series, 19
comparison, 20
divergence, 19
integral, 19
limit comparison, 20
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p-series, 19
ratio, 20
root, 19
telescoping series, 19

triple product rule, 9

u-substitution, 10

variation of parameters, 55

Wronskian, 78
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