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Casel N contains z 3-cycle. .
Case Il N contains a product of disjoint cycles, at least one of which has length greater than 3, [Hinf: Suppose
N contains the disjoint product o = (@, az, -+ a,). Show o~ (ay, az, a)olay, a2 ay) lisin N,
and compute it.]
Cage IIT N contains a disjoint product of the formo = s, as, AeXds, 62, @3)- [Hint: Show o Hay, oz, aa) .
o(ay, ay, aa)”" is in N, and compute it.] '
Case IV N contains a digjoint product of the form o = u(ay, az, as) where pisa product of disjoint 2-cyeles.
{Hint: Show o € N and compute it.]
Case VN contains a disjoint product o of the form o = wlas, as)ay, az), where gt isa ;}roduct'of ant even
sumber of disjoint 2-cycles. [Hint: Show that o~ Hay, ay, @) (ay, az, a:)"! is in N, and compute
it to deduce that & = (a2, as)ar, 43) is in N. Using n = 5 for the first time, find i # ay, 82,43, 44
in (1,2, -, n}. Let § = (ay, a5, 3). Show that B~ 1efa € N, and compute it.]
40. Let N be a normal subgroup of G and let H be any subgroup of G. Let H N = {hn|h € H n & N}. Show that
HN is a subgroup of G, and is the smailest subgroup containing both N and H.
41. With reference to the preceding exercise, let M also be a normal subgroup of G. Show that NM is again a
normal subgroup of G.
47. Show thatif H and X are normal subgroups of a group G such that H N K = {e}, then kk = kh foralth € H

and k € K. [Hint: Consider the comnutator k=t = (hkh™ kY = kR

tGrOUP ACTION ON A SET

We have seen examples of how groups may act on things, like the group of symmetries
of a triangle or of a square, the group of rotations of a cube, the general linear group

acting on ", and so on. In this section, we give the general notion of group action on a
set. The next section will give an application to counting.

The Notion of a Group Action

Definition 2.1 defines a binary operation # on a set S o be a function mapping § X §
into §. The function * gives us arule for “multiplying” an element sy in § and an element
s, in § to yield an element §; * 52 ns.

More generally, for any sets A, B, and C, we can view a map * . AxB-—Cas
defining a “multiplication,” where any clement ¢ of A times any element b of B has as
value some element ¢ of C. Of course, we write @ # b = ¢, or simply ab = c. In this
section, we will be concerned with the case where X is a set, G is a group, and we have
amap*:GxX->X.Weshallwrite*(g.x)asg*xorgx. '

16.1 Definition Let X be aset and G a group. Anactionef Gon X isamaps: G x X — X such that
B

1. ex=xforallx € X,
2. (gig2)lx) = gi(gax)forallx € Xandallg, g2 € G.

Under these conditions, X is a G-set.

1 This section is a prerequisite only for Sections 17 and 36.




16.2 Example

16.3 Theorem

Proof
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Let X be any set, and let H be a subgroup of the group Sy of all permutations of X,
Then X is an H-set, where the action of ¢ € H on X is its action as an element of
Sx, so that ox = o (x) for all x € X. Condition 2 is a consequence of the definition of
permutation multiplication as function composition, and Condition I is immediate from
the definition of the identity permutation as the identity function. Note that, in particular,
{1,2,3,---,n}isan §, set. ' - A

Our next theorem will show that for every G-set X and each g € G, the map
oy : X — X defined by o,(x) = gx is a permutation of X, and that there is a homomor-
phism ¢ : G — Sx such that the action of G on X is essentially the Example 16.2 action
of the image subgroup H = ¢{G] of Sy on X. So actions of subgroups of Sy on X de-
seribe all possible group actions on X. When studying the set X, actions using subgroups
of Sy suffice. However, sometimes a set X isused to stady G viaa groupactionofGon X. -
Thus we need the more general concept given by Definition 16.1.

Let X be a G-set. For each g € (5, the function op 1 X — X defined by ég(x) = gx
for x € X is a permutation of X. Also, the map ¢ : G —+ Sy defined by plg) =0, isa
homormnorphism with the property that ¢(g){x) = gx.

To show that o, is a permutation of X, we must show that it is a one-to-one map
of X onto itself. Suppose that o, (x;) = oglxs) for xy,x; € X. Then gx; = gxy. Con-
sequently, g7'(gx1) = g7 (gx2). Using Condition 2 in Definition 16.1, we see that
(g7 g)x1 = (g7 g)xa, 50 ex; = ex,. Condition 1 of the definition then yields x1 = x,,
30 0 is one to one. The two conditions of the definition show that for x € X, we have
(g7 %) = glg™ ) = (gg™")x = ex = x, 50 0, maps X onto X. Thus o, is indeed a
permutation. '

To show that ¢ : G — Sy defined by ¢(g) = o, is a homomorphism, we must
show that ¢(g1£2) = ¢(g1)d{g2) for all g1, g» € G. We show the equality of these two
permutations in Sy by showing they both carry an x € X into the same element. Us-
ing the two conditions in Definition 16.1 and the rule for function composition, we
obtain

Hg182)(x%) = 0y, (x) = (2182)x = £1(g2%) = 8104, (x) = 04, (0,,(x))
== (g, 0 0g, J(X) == (0,079, )(X) = (D(R1)p(g2))(x).

Thus ¢ is a homomorphism. The stated property of ¢ follows at once since by our
definitions, we have ¢(g)(x) = o, (x) = gx. %

It follows from the preceding theorem and Theorem 13.15 that if X is G-set, then
the subset of G leaving every element of X fixed is a normal subgroup N of G, and we
canregard X asa G/N-set where the action of a coset gN on X is given by (gN)x = gx
foreachx € X. M N = {e}, then the identity element of G is the only element that leaves
every x € X fixed; we then say that G acts faithfully on X. A group G is transitive on
a G-set X if for each x;, x; € X, there exists g € G such that gx) = X3, Note that G is
trapsitive on X if and only if the subgroup ¢{G) of Sy is transitive or X, as defined in
Exercise 49 of Section 8.

We continue with more examples of G-sets.
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16.4 Example

16.5 Example

16.6 Example

16.7 Example

16.8 Example

Homomorphisms and Factor Groups

Bvery group G is itself a -set, where the action on gz € G by g € G is given by left
multiplication. That is, (g1, £2) = 2182 If H is a subgroup of G, we can also regard G
as an H-set, where x(k, g) = hg. A

et H be a subgroup of G. Then: G is ah H -setunder conjugation where «(h, g) = hgh™!
forgeGandh e H. Condition 1 is obvious, and for Condition 2 note that

#{hihy, ) = (hyho)glhihy) ™ = hy(haghy D! = w(hy, ¥{ha, £))-

We always write this action of H on G by conjugation as hgh~'. The abbreviation hg
described before the definition would cause terrible confusion with the group operation
of G. ‘ A

For students who have studied vector spaces with real (or complex) scalars, we mention
that the axioms (rs)v = r(sv) and 1v =¥ for scalars 7-and s and a vector v show that
the set of vectors is an R*-set (or a C*-set) for the multiplicative group of nonzero
scalars. A

Let H be a subgroup of G, and let Ly be the set of all left cosets of H. Then Ly is
a G-set, where the action of g € G on the left coset x H is given by g(x H) = (gx)H.
Observe that this action is well defined: if yH =xH, then y = xh for some h € H,
and g(yH) = (gy)H = (gxh)H = (gx)(hH) == (gx)H = g(x H). Asenies of exercises
shows that every G-set is isomorphic 10 one that may be formed using these left coset
G-sets as building blocks. (See Exercises 14 through £7.) A

Let G be the group Dy = {0, 01, P2, 03, 1 42, 8y, 57} of symmetries of the square,
described in Example 8.10. In Fig. 16.9 we show the square with vertices 1, 2,3,4as
in Fig. 8.11. We also label the sides sy, $2, §3, 54, the diagonals d, and d,, vertical and
horizontal axes m; and mo, the center point C, and midpoints F; of the sides ;. Recall
that p; corresponds to rotating the square counterclockwise through i /2 radians, j

Py 3
4 ? 3
84 dl d2
P, (5 - P,
niy $
1 2
5 Py

16.9 Figure




16.11 Example

16.12 Theorem

Proof

16.13 Definition

Section 16 Group Action on a Set

16.10 Table

3 2 3 4 51 Sz &3 g 13 g d; dy C P P2 P3 Pq
Po 1 2 3 4 51 32 53 &4 my g d] dz C P Pz P_-; P4
Fal 2 3 4 1 Ly ] 83 84 By g iy dz d[ C Py P Py P;
P2 3 4 i 2 83 S5 51 &g Ny My dl d?_ C P3 Py Pl Py
£3 4 1 2 3 &4 . 8 L] E o my dg d; C P4 P] Pz P3
1231 2 1 4 3 & £4 53 $2 g 115 dz d] C Py P4 Py P;g
Mz 4 3 2 1 53 82 51 5q L8} ms dg d; C P3 Pz P; Py
61 3 2 1 4 82 &y Sq 3 Mg iy d; dy C P2 Pi P4 P3
52 H 4 3 2 Sq 53 byl 5 Hiy 3] d] dz C Py P_’; P P;

corresponds 1o flipping on the axis m;, and §; to flipping on the diagonal ;. We let
X = {iw 2: 3: 4': §1, 82, 83, 84, My, 2, d]y dl: Ca P]w PZu P3, P4}

Then X can be regarded as 2 D4-setin a natural way. Table 16.10 describes completely the
action of D; on X and is given to provide geometric illustrations of ideas to be introduced.
We should be sure that we understand how this table is formed before continuing. A

Isotropy Subgroups

Let X bea G-set. Letx € X and g € G. It will be important to know when gx = x. We
let

X, ={xeX|gx=x} and G, ={geGlgx =x}.

a

For the D4-set X in Example 16.8, we have
X =X, X = {C}, Xy = {51, 53, my,ma, C, Py, Ps}
Also, with G = Dy,
Gi={po, 62}, Gy ={po, 1},  Ga = {po, p2. 81, 82}
We leave the computation of the other X; and G to Exercises 1 and 2. A

Note that the subsets G, given in the preceding example were, in each case, sub-
groups of G, This is true in general,

Let X be a G-set. Then G, is a subgroup of G foreach x & X,

Let x € X and let g1, g2 € G,. Then gyx = x and gox = x. Consequently, (g1g2)x =
g1(g2x) = g1x = x,30 g1 g2 € Gy, and G, is closed under the induced operation of . Of
course ex = x,80¢ € G,. If g € G, then gx = x,80x = ex = (g7 g)x = g N gx) =
g 1x, and consequently ¢! € G,. Thus G, is a subgroup of G. %

Let X be a G-set and let x € X. The subgroup G, is the isotropy subgroup of x. @
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16.14 Theorem

Proof

16.15 Definition

16.16 Theorem

Proof

Heomomorphisms and Factor Groups

Orbits

For the Ds-set X of Example 16.8 with action table in Table 16.10, the elements in the
subset {1, 2, 3, 4} are carried into elements of this same subset under action by Dy.
Furthermore, each of the elements 1, 2, 3, and 4 is carried into all the other elements of
the subset by the various elements of Dy. We proceed to show that every G-set X can
be partitioned into subsets of this type.

N

LI

Let X be g G-set. For xy, x2 € X, let x| ~ x; if and only if there exists g € & such that
gx; = xp. Then ~ is an equivalence relation on X.

For each x € X, we have ex = x, 50 x ~ x and ~ is reflexive. )

Suppose x; ~ x2. s0 gx; =x; for some g e G. Then g7 lxy = g7 gx) =
(g7 g = ex; = xy, 50 X3 ~ X3, and ~ Is symmetric,

Finally, if x; ~ xz and x; ~ X3, then g1x) = x and gaxs = x3 for some g3, g2 € G.
Then {gzg)x1 = ga(giX1) = gaxy = x3, 50 X1 ~ x3 and ~ is transitive. . ¢

Let X be a G-set. Each cell in the partition of the equivalence relation described in
Theorem 16.14 is an orbit in X under G. If x € X, the cell containing x is the orbit
of x. We let this cell be Gx. &

The relationship between the orbits in X and the group structure of G lies at the
heart of the applications that appear in Section 17, The following theorem gives this
relationship. Recall that for a set X, we use | X| for the number of elements in X, and
(G : H)is the index of a subgroup H in a group G.

Let X be a G-set and let x € X. Then |Gx| = (G : Gy). If |G| is finite, then [Gxlis a
divisor of {G].

We define a one-to-one map ¥ from Gx onto the collection of left cosets of G, in G.
Let x; € Gx. Then there exists g; € @ such that gyx = x;. We define ¥ (x;) to be the
left coset g G, of G.. We must show that this map v is well defined, independent of the
choice of g; € G such that g;x = x;. Suppose also that g,'x = x1. Then, g1x = g1'x, 50
gi”l{g;x} = gl'l(gl’x}, from which we deduce x = (g{“’g;’)x. Therefore gl"‘gl’ € Gy,
so g1’ € ;1G,, and g, G, = g,'G,. Thus the map ¥ is well defined.

To show the map 1 is one to one, suppose x1, x2 € Gx, and ¥(x1) = ¥(x3). Then
there exist g1, g2 € G such that x; == g1x, 33 = gox,and gy € g;Gy. Then g = g1g for
some g € Gy, 50 xz = gax = g1{gx) = g1x = x;. Thus ¥ is one to one.

Finally, we show that each left coset of G, in G is of the form ¥ (x,)} for some
x; € Gx. Let g1G; be a left coset. Then if gix = x;, we have g1Gx = ¥(x1). Thos
maps Gx one to one onto the collection of left cosets so [Gx| = (G Gy).

If |G| is finite, then the equation |G| == |G, |[{G ! G,) shows that {Gx| = (G : Gy)
is a divisor of |G]. . ¢




Section 16 Exercises

16.17 Example Let X be the D;-set in Example 16.8, with action table given by Table 16.10. With
G = Dy, wehave G1 = {1, 2, 3, 4} and G} == {pqp, 82}. Since |G| = B, wehave |G1] =
(G: Gy =4 A

We should remember not only the cardinality equation in Theorem 16.16 but also
that the elements of G carrying x into g1x are precisely the elements of the left coset
21Gy. Namely,ifg € G,,then{g1g)x = g1(gx) = £1x.0n the other hand, if gox = g1x,
then g["l(gzx} =X 80 (g;]gg)x = x. Thus gi'igp_ e G, 8082 € 81G,.

m EXERCISES 16

Computations
In Exercises 1 through 3, let
X =11, 2,3, 4, 51,82, 53,84, M3, ma, dy, da, C, Py, Pa, P3, Py}
be the Dy-set of Example 16.8 with action table in Table 16.10. Find the foliowing, where G = Dy.
1. The fixed sets X, for each o € Dy, thatis, X, Xp, -+ Xg
2. The isotropy subgroups G, for cach x € X, thatis, Gy, Gz, -+, Gp,, Gp,
3. The orbits in X under Dy
Concepis

In Exercises 4 and 5, correct the definition of the italicized term without reference to the text, if correction is needed,
50 that it is in a form acceptable for publication.

4. A group G acts faithfully on X if and only if gx = x implies that g = e.
5. A group G is transitive on  G-set X if and only if, for some g € G, gx can be every othgr x.

6. Let X beaG-setandlet S © X. If Gs € Sforalls € S, then § is a sub-G-set. Characterize a sub-G-set of a
G-set X in terms of orbits in X and .

7. Characterize a transitive G-set in terms of its orbits.

Mark each of the following true or false.

by

~a. Bvery G-setis also a group.
b. Bach element of a G-set is left fixed by the identity of G.
¢ Ifevery element of a G-set is left fixed by the same element g of G, then g must be the identity e.
o d.LetX beaG-setwithxy, xp € X and g € G. If gxy = gxp, then x; = x3.
e LetXbeaG-setwithx € X and g1, g2 € G. If g1x == gox, then gy = £,
. 1. Each orbit of a G-set X is a transitive sub-G-set.
e g Let X bea G-setand let # < G. Then X can be regarded in a natural way as an M -set.
. h. With reference to (g), the orbits in X under H are the same as the orbits in X under G.
i, If X is a GG-set, then each element of G acts as a permutation of X.
ed Jo Let X bea G-setand let x € X, G is finite, then 1G| = |Gx| |Gyl
Let X and ¥ be G-sets with the same gronp G- An isomorphism between G-sets X and ¥ isamapg : X — ¥

that is one to one, onto ¥, and satisfies g(x) = ¢(gx} forall x € X and g € G. Two G-sets are isomorphic
if such an isomorphism between them exists. Let X be the Dy-set of Example 16.8.

hd
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a. Find two distinct orbits of X that are isomorpiic sub- Dy-sets.

b. Show that the orbits {1, 2, 3, 4} and {51, 52. 53, s4) are not isomorphic sub-Dg-sets. [Hint: Find an element
of G that acts in an essentially different fashion on the ¢wo orbits. ]

¢, Are the orbits you gave for your answer to part (a) the only two different isomorphic sub-Dy-sets of X ?

16, Let X be the Dy-sel in Example 16.8.

a. Does Dy act faithfully on X7
b. Find all orbits in X on which Dy acts faithfully as a sub-Dy-set.

Theory

11. Let X be a G-set. Show that G acts faithfully on X if and only if no two distinct elements of G have the same
acticn on each element of X. :

12. Let X bea G-setand let ¥ © X. Let Gy ={geGlgy=yfor all y € Y}. Show Gy isa subgroup of G,
generalizing Theorem 16.12.

13. Let G be the additive group of real numbers. {.et the action of @ & G on the real plane R? be given by rotating
the plane counterclockwise about the origin through @ radians. Let P be a point other than the origin in the
plane.

a, Show RB? is a G-set,
b. Describe geometrically the orbit containing P.
¢. Find the group Gp.

Exercises 14 through 17 show how all possible G-sets, up © isomorphism (see Exercise 9), can be formed from
the group G.

14. Let{X;1i € I} be a disjoint collection of sets, so X; N X; =& fori # J. Teteach X; be a G-set for the same
group G.
a. Show that{ ., X; can be viewed ina natural way as a G-set, the union of the G-sets X;.
b. Show that every G-set X is the union of its orbits.

15. Let X be a transitive G-set, and let xp € ¥ Show that X is isomorphic (see Exercise 9) to the G-set L of all
left cosets of G, described in Example 16.7. [Hint: Forx € X, suppose x = gxp, and define ¢ X — Lby
Plx) = gy, Besure to show ¢ is well defined!]

16. Let X; for i € I be G-sets for the same group G, and suppose the sets X; are not necessarily disjoint. Let
X! = {(x, ) {x € Xy} for each i € /. Then the sets X/ are disjoint, and each can still be regarded as a G-setin
an obvious way. (The elements of X; have simply been tagged by [ t0 distinguish them from the elements of
X;fori # j.) The G-set (i, X} is the disjoint union of the G-sets X;. Using Exercises 14 and 15, show that
every G-set is isomorphic to a disjoint union of left coset G-sets, as described in Example 16.7.

17. The preceding exercises show that every G-set X is isomorphic to a disjoint union of left coset G-sets. The
question then arises whether teft coset G-sets of distinct subgroups H and K of G can themselves be isomorphic.
Note that the map defined in the hint of Exercise 15 depends on the choice of xp as “base point”” If xo is replaced
by goxe and if G, # G oo then the collections L g of left cosets of H = Gy, and L g of left cosets of K = Gy
form distinet G-sets that must be isomorphic, since both L g and L are isomorphic to X.

a. Let X be a transitive G-set and let xp € X and go € G. If H =Gy describe K = Ggor 1T XIS of H
and go.

b. Based on part (a), conjecture conditions on subgroups H and K of G such that the left coset G-sets of H
and K are isomorphic.

¢. Prove your conjecture in part (b).
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8. Up to isomorphism, how many transitive Z4 sets X are there? (Use the preceding exercises.) Give an example
of each isomorphism type, listing an action table of each as in Table 16.10. Take lowercase names a, b, ¢, and
so on for the elements in the set X,

19. Repeat Exercise 18 for the group Zs.

20. Repeat Exercise 18 for the group 3. List the elements of S in the order ¢, {1, 2, 3), (1, 3, 2, (2, 3), (L, ),
(1, 2.

{ APPLICATIONS OF G-SETS To COUNTING

This section presents an application of our work with G-sets to counting. Suppose, for
example, we wish to count how many distinguishable ways the six faces of a cube can
be marked with from one to six dots to form a die. The standard die is marked so that
when placed on a table with the 1 on the bottom and the 2 toward the front, the 6 is on
top, the 3 on the left, the 4 on the right, and the 5 on the back. Of conrse, other ways of
marking the cube to give a distinguishably different die are possible.

Let us distinguish between the faces of the cube for the moment and call them the
bottom, top, left, right, front, and back. Then the bottom can have any one of six marks
from one dot to six dots, the top any one of the five remaining marks, and so oa. There
are 6! = 720 ways the cube faces can be marked in all. Some markings yield the same
die as others, in the sense that one marking can be carried into anothier by a rotation
of the marked cube. For example, if the standard die described above is rotated 90°
counterclockwise as we look down on it, then 3 will be on the front face rather than 2,
but it is the same die.

There are 24 possible positions of a cube on a table, for any one of six faces can be
placed down, and then any one of four to the front, giving 6 - 4 = 24 possible positions.
Any position can be achieved from any other by a rotation of the die. These rotations
form a group G, which is isomorphic to a subgroup of Sg (see Exercise 45 of Section 8).
We let X be the 720 possible ways of marking the cube and let G act on X by rotation of
the cube. We consider two markings to give the same die if one can be carried into the
other under action by an element of G, that is, by rotating the cube. In other words, we
consider each orbit in X under G to comrespond to a single die, and different orbits to
give different dice. The determination of the number of distinguishable dice thus jeads
to the question of determining the number of orbits under G in a G-set X,

The following theorem gives a too! for determining the pumber of orbits in a2 G-
set X under G. Recall that for each g € G we let X be the set of elements of X left
fixed by g, so that X, = {x € X |gx = x}. Recall also that for each x € X, we let
Gy = {g € Glgx = x}, and Gx is the orbit of x under G.

{Burnside’s Formuia) Let G be a finite group and X a finite G-set. i r is the number
of orbits in X under G, then

rAG =y 1X,) 1

geG

T This scetion is not used in the remainder of the ext.




